
Programmieren

Ingenieurinformatik Teil 1, Wintersemester 2025/26

David Straub

Programmieren – D. Straub Gliederung

Gliederung

1. Einführung
2. Grundlagen: Variablen, Datentypen, Verzweigungen
3. Funktionen
4. Schleifen
5. Datenstrukturen
6. Module & Bibliotheken
7. Algorithmen, Pseudocode & Struktogramme
8. Arbeiten mit Zeichenketten
9. Visualisierung von Funktionen

10. Zahlensysteme
11. Klassen
12. Numerisches Programmieren mit NumPy

2

Programmieren – D. Straub Einführung

Einführung

1. Warum Programmieren?
2. Organisatorisches
3. Warum Python?
4. Python installieren

Warum Python? Einfachheit

Python:

print("Hallo Welt!")

Java:

public class HelloWorld {
public static void main(String[] args) {

System.out.println("Hallo Welt!");
}

}

Einfachheit: Liste der Quadrate der Zahlen von 0 bis 9

Python:

quadrate = [x**2 for x in range(10)]

Fortran:

program quadrate
implicit none
integer :: i
integer, dimension(10) :: quadrate
do i = 0, 9

quadrate(i+1) = i**2
end do
end program quadrate

3

Programmieren – D. Straub Einführung

Beliebtheit

Quelle: TIOBE

Warum Beliebtheit wichtig ist

• Mehr Bibliotheken
• Mehr Dokumentation
• Mehr Jobs
• Bessere KI-Unterstützung

Mythen über Python

Früher verbreitete Mythen über Python:

• Nur für Skripting
• Nur für Anfänger
• Langsam

Heute:

• Industriestandard für ML/AI
• Standard für wissenschaftliches Rechnen
• Weit verbreitet in Webentwicklung, Automatisierung, uvm.

Zusammenfassung: Warum Python?

• Sehr einfach
• Extrem beliebt
• Weit verbreitet in Industrie und Wissenschaft
• Quelloffen & kostenlos

4

https://www.tiobe.com/tiobe-index/

Programmieren – D. Straub Einführung

Python installieren

• Anders als z.B. C++ ist Python eine interpretierte Programmiersprache, d.h. der Code wird
zur Laufzeit Zeile für Zeile ausgeführt.

• Das ausführende Programm heißt Interpreter und ist für alle gängigen Betriebssysteme
verfügbar.

Anleitung:

• Windows: https://www.python.org/downloads/windows/ – herunterladen & installieren
– oder einfach WSL

• Ubuntu: sudo apt install python3 python3-pip
• MacOS: brew install python

Bitte kein Anaconda …

Versionsgeschichte

Version Veröffentlichung EOL

3.9 2020-10 2025-10
3.10 2021-10 2026-10
3.11 2022-10 2027-10
3.12 2023-10 2028-10
3.13 2024-10 2029-10
3.14 2025-10 2030-10

• Details: Status of Python Versions
• Diese Veranstaltung: Python 3.10 oder höher (3.12 oder 3.13 empfohlen)

Konsole, Skript, Notebook

• Konsole: interaktive Eingabe von Python-Befehlen

5

https://learn.microsoft.com/de-de/windows/wsl/install
https://devguide.python.org/versions/

Programmieren – D. Straub Einführung

– nützlich als schneller Taschenrechner
• Skript: Python-Code in einer Datei mit der Endung .py

– nützlich für längere Programme
• Jupyter Notebook: interaktive Umgebung für Datenanalyse und Visualisierung

– nützlich für explorative Programmierung

Python ausprobieren, ohne es zu installieren

• Python Online: https://pythononline.net/
• JupyterLite: https://jupyter.org/try
• FK07 DataHub (JupyterHub): https://datahub.cs.hm.edu/
• Github Codespaces: https://github.com/DavidMStraub/python-codespace

One-Minute-Paper

Moodle: https://link.hm.edu/y4vj

• Schreiben Sie 3 Dinge auf, die Sie heute gelernt haben
• Was war am unklarsten?
• Gibt es etwas spezielles, das Sie in diesem Kurs lernen möchten?

6

Programmieren – D. Straub Grundlagen

Grundlagen

1. Variablen
2. Einfache Datentypen (int, bool, float, str)
3. Verzweigungen

Variablen

Variablen speichern Werte:

x = 42
y = x
x = 100
print(y)

print(x)

Variablennamen: Fallstricke

class = "Mathematik" # SyntaxError!
klass = "Mathematik"
print(klass)

Schlecht lesbar:
l = 1
I = 1
O = 0
print(l, I, O)

Namen: Konventionen

Variablen & Funktionen: snake_case �
first_name = "Alice"
calculate_average()

Konstanten: UPPER_SNAKE_CASE �
MAX_SIZE = 100

7

Programmieren – D. Straub Grundlagen

API_KEY = "secret"

Klassen: PascalCase �
class UserAccount:

pass

Privat: führender Unterstrich �
_internal_value = 42
__very_private = "secret"

Ganze Zahlen (int)

Integers haben unbegrenzte Präzision:

riesig = 2 ** 1000
print(len(str(riesig)))

print(riesig % 1000)

Division & Integers

print(10 / 3)

print(type(10 / 3))

print(10 // 3)

print(-10 // 3)

Wahrheitswerte (bool)

Booleans sind eigentlich Integers:

print(True + True)

print(True * 42)

print(False - True)

8

Programmieren – D. Straub Grundlagen

Vergleichsoperatoren

print(5 == 5)

print(5 != 3)

print(10 > 5)

print(5 >= 5)

print("Python" > "Java") # Lexikografischer Vergleich

Truthiness: Was ist wahr?

print(bool(0))

print(bool(42))

print(bool(""))

print(bool("0"))

Vergleichsoperatoren: Chaining

x = 5
print(1 < x < 10)

print(10 < x < 20)

print(1 < x > 3)

Logische Operatoren

print(True and False)

print(True or False)

print(not True)

9

Programmieren – D. Straub Grundlagen

print(not False)

print(not 0)

print(not "")

Kurzschlussauswertung

print(False and 1/0)

print(True or 1/0)

print(0 and print("Hallo"))

Gleitkommazahlen (float)

IEEE 754 Double Precision Fallstricke:

print(0.1 + 0.1 + 0.1)

print(0.1 + 0.1 + 0.1 == 0.3)

x = 0.1
print(f"{x:.20f}")

Vergleich von Gleitkommazahlen

a = 0.1 + 0.1 + 0.1
b = 0.3
tolerance = 1e-10
print(abs(a - b) < tolerance)

Extreme Werte

print(1e308)

print(1e309)

10

Programmieren – D. Straub Grundlagen

print(1e-324)

print(1e-325)

Strings

Verschiedene Anführungszeichen
single = 'Hallo'
double = "Welt"
print(single + " " + double)

triple = """Mehrzeiliger
String"""
print(triple)

Strings und Unicode: Emoji

Strings unterstützen vollständig Unicode
message = "Python ist toll! ��"
print(message)

Emoji sind normale Zeichen
emoji_string = "���"
print(len(emoji_string))

Escape Sequences

print("C:\new_folder\test.txt")

print(r"C:\new_folder\test.txt")

print("Zeile 1\nZeile 2\tTab")

11

Programmieren – D. Straub Grundlagen

String-Formatierung mit f-Strings

name = "Alice"
age = 25
print(f"Hallo, ich bin {name} und {age} Jahre alt")

Vorteile gegenüber älteren Methoden: - Lesbar und intuitiv - Direkte Variableneinbettung -
Schneller als .format() oder %-Formatierung - Unterstützt Ausdrücke: f"Das Ergebnis ist {x
+ y}"

f-String Formatierung

number = 1234567.89
print(f"{number:,.2f}")

print(f"{number:>15,.2f}")

percent = 0.1234
print(f"{percent:.1%}")

Aufgabe: Persönlicher Datenrechner

Schreibe ein Python-Skript, das persönliche Daten verarbeitet:

Gegeben:

• Name, Geburtsjahr, Größe (cm), Gewicht (kg)

Berechne und gib aus:

• Alter (aktuelles Jahr: 2025)
• BMI (Gewicht / (Größe in m)²)
• Personendaten als formatierte f-Strings
• Wahrheitswerte für: ist volljährig, ist normalgewichtig (BMI 18,5-24,9)

Kontrollstrukturen: Übersicht

Was sind Kontrollstrukturen?

• Mechanismen zur Steuerung des Programmflusses

12

Programmieren – D. Straub Grundlagen

• Bestimmen die Reihenfolge der Befehlsausführung
• Ermöglichen komplexe Programmlogik

Grundtypen: 1. Sequenz – Befehle nacheinander (Standard) 2. Verzweigung – Bedingte
Ausführung (if, elif, else) 3. Wiederholung – Schleifen (for, while)

Verzweigungen

Konzept:

• Programme müssen Entscheidungen treffen
• Verschiedene Pfade basierend auf Bedingungen
• Ermöglicht adaptive und intelligente Programme

Syntax-Muster:

if bedingung1:
Code wenn bedingung1 wahr

elif bedingung2:
Code wenn bedingung2 wahr

else:
Code wenn keine Bedingung wahr

Verzweigungen: Wichtige Konzepte

• Einrückung (Indentation) definiert Codeblöcke
• Bedingungen werden von oben nach unten geprüft
• Nur der erste wahre Zweig wird ausgeführt

Verzweigungen: Truthiness in der Praxis

name = ""
if name:

print("Name ist vorhanden")
else:

print("Kein Name angegeben")

13

Programmieren – D. Straub Grundlagen

name = "Alice"
if name:

print("Name ist vorhanden")
else:

print("Kein Name angegeben")

Komplexe Bedingungen

age = 17
has_id = True
if age >= 18 and has_id:

print("Einlass gewährt")
elif age >= 16:

print("Einlass mit Begleitung")
else:

print("Kein Einlass")

age = 20
has_id = False
if age >= 18 and has_id:

print("Einlass gewährt")
elif age >= 16:

print("Einlass mit Begleitung")
else:

print("Kein Einlass")

Aufgabe

Schreibe ein Python-Programm um zu entscheiden, ob eine Rakete starten darf.

Eingaben:

• Treibstoff (%), Temperatur (°C), Crew (ja/nein), Wetter

Startbedingungen:

• Treibstoff � 70%, Temperatur < 100°C, Crew bereit, Wetter � “storm”

Ausgabe:

14

Programmieren – D. Straub Grundlagen

• � “� Startfreigabe erteilt!” oder � “Start abgebrochen!” + Grund

15

Programmieren – D. Straub Funktionen

Funktionen

Kapselung von Komplexität

The greatest limitation in writing software is our ability to understand the systems we
are creating.

…

There are two general approaches to fighting complexity … The first is to eliminate
complexity by making code simpler and more obvious. … The second is to
encapsulate it, so that programmers can work on a system without being exposed to
all of its complexity at once.

John Ousterhout, “A Philosophy of Software Design”

Warum Funktionen?

Das DRY-Prinzip: “Don’t Repeat Yourself”

FOOT = 0.3048
NAUTICAL_MILE = 1852.0

altitude_ft = 35000
altitude_m = altitude_ft * FOOT # Flughöhe
print(f"Flughöhe: {altitude_ft} ft = {altitude_m:.0f} m")

distance_nm = 450
distance_m = distance_nm * NAUTICAL_MILE # Strecke
print(f"Strecke: {distance_nm} nm = {distance_m:.0f} m")

usw. ...

Probleme: Code-Duplikation, Fehleranfällig, schwer zu ändern

16

Programmieren – D. Straub Funktionen

Funktionen: Kapselung (encapsulation) der Funktionalität

def fuss_zu_meter(fuss):
return fuss * 0.3048

def seemeilen_zu_meter(seemeilen):
return seemeilen * 1852.0

Jetzt einfach und wiederverwendbar:
print(f"Flughöhe: {fuss_zu_meter(35000):.0f} m")
print(f"Landebahn: {fuss_zu_meter(8000):.0f} m")
print(f"Reichweite: {seemeilen_zu_meter(3000):.0f} m")

Vorteile: Wiederverwendbar, lesbar, wartbar, weniger Fehler!

Anatomie einer Funktion

def funktionsname(parameter1, parameter2):
"""Optionaler Docstring zur Dokumentation"""
Funktions-Code hier
ergebnis = parameter1 + parameter2
return ergebnis # Optional: Rückgabewert

Aufbau:

• def - Schlüsselwort für Funktionsdefinition
• funktionsname - Aussagekräftiger Name (snake_case �)
• () - Parameter in runden Klammern
• : - Doppelpunkt zum Start des Funktionsblocks
• Eingerückter Code-Block
• return - Optionale Rückgabe

Erste einfache Funktion

Eine Funktion ohne Parameter führt bei jedem Aufruf denselben Code aus.

17

Programmieren – D. Straub Funktionen

def mission_start():
print("� Mission Control: Start-Sequenz initiiert")
print("� Alle Systeme bereit für den Start!")

Funktion aufrufen:
mission_start()

Funktionen mit Parametern

Parameter ermöglichen es, Funktionen mit unterschiedlichen Eingabewerten flexibel zu nutzen.

def mission_status(spacecraft):
print(f"� {spacecraft} Status: Alle Systeme nominal")
print("Bereit für nächste Manöver-Phase")

mission_status("ISS")
mission_status("Artemis I")
mission_status("Dragon Capsule")

Mehrere Parameter

Funktionen können mehrere Parameter haben, die sowohl positionell als auch mit Namen
übergeben werden können.

def flugdaten_anzeigen(flugzeug_typ, hoehe_ft, geschwindigkeit_kn):
hoehe_m = hoehe_ft * 0.3048
geschwindigkeit_kmh = geschwindigkeit_kn * 1.852
print(f"� {flugzeug_typ}")
print(f"Höhe: {hoehe_ft} ft ({hoehe_m:.0f} m)")
print(f"Geschwindigkeit: {geschwindigkeit_kn} kn ({geschwindigkeit_kmh:.0f} km/h)")

Verschiedene Aufrufe:
flugdaten_anzeigen("Airbus A380", 35000, 450)
flugdaten_anzeigen(hoehe_ft=25000, flugzeug_typ="Boeing 737", geschwindigkeit_kn=420)

18

Programmieren – D. Straub Funktionen

Rückgabewerte: return

Mit return gibt eine Funktion einen berechneten Wert zurück, der weiterverwendet werden kann.

def berechne_orbital_geschwindigkeit(hoehe_km):
Vereinfachte Berechnung für kreisförmige Umlaufbahn
erdradius = 6371 # km
gravitationskonstante = 398600 # km³/s²
r = erdradius + hoehe_km
geschwindigkeit = (gravitationskonstante / r) ** 0.5
return geschwindigkeit

ISS-Orbitalgeschwindigkeit berechnen:
iss_hoehe = 408 # km
v_orbital = berechne_orbital_geschwindigkeit(iss_hoehe)
print(f"ISS Orbitalgeschwindigkeit: {v_orbital:.2f} km/s")

Mehrere Rückgabewerte

Funktionen können mehrere Werte als Tupel zurückgeben, die direkt entpackt werden können.

def triebwerk_analyse(schub_newton, treibstoff_verbrauch_kg_s):
spezifischer_impuls = schub_newton / treibstoff_verbrauch_kg_s
triebwerk_masse = 1000 # kg
schub_gewichts_verhaeltnis = schub_newton / (triebwerk_masse * 9.81)
return spezifischer_impuls, schub_gewichts_verhaeltnis

isp, twr = triebwerk_analyse(2200000, 700)
print(f"Spez. Impuls: {isp:.0f} N�s/kg, Schub/Gewicht: {twr:.1f}")

Mehr zu „Tupeln“ (x, y) in Kapitel 5 (Datenstrukturen)!

Standardwerte für Parameter

Parameter können Standardwerte erhalten, die verwendet werden, wenn beim Aufruf kein Wert
übergeben wird.

19

Programmieren – D. Straub Funktionen

def mission_planung(ziel, startdatum="TBD", crew_groesse=3, notfall_backup=True):
print(f"� Mission zum {ziel}")
print(f"Start: {startdatum}")
print(f"Crew: {crew_groesse} Astronauten")
if notfall_backup:

print("� Notfall-Backup-Systeme aktiv")

Verschiedene Missionen:
mission_planung("Mond")
mission_planung("Mars", "2026-07-15")
mission_planung("ISS", crew_groesse=6)
mission_planung("Europa", startdatum="2030-01-01", notfall_backup=False)

Lokale vs. Globale Variablen

Lokale Variablen in Funktionen überdecken gleichnamige globale Variablen, ohne diese zu
verändern.

Globale Variable
temperatur = 20 # °C

def berechne_luftdichte(hoehe_m):
Lokale Variable (nur in der Funktion sichtbar)
temperatur = -50 # °C in der Stratosphäre
Diese lokale Variable "überdeckt" die globale
dichte = 1.225 * (1 - 0.0065 * hoehe_m / 288.15) ** 4.256
return dichte

print(f"Bodentemperatur: {temperatur}°C") # 20°C (global)

luftdichte = berechne_luftdichte(10000)
print(f"Luftdichte in 10km Höhe: {luftdichte:.3f} kg/m³")

print(f"Nach Funktionsaufruf: {temperatur}°C") # Immer noch 20°C!

20

Programmieren – D. Straub Funktionen

Funktionen mit Verzweigungen

def startfreigabe_pruefen(treibstoff_prozent, wetter, crew_bereit, systeme_ok):
if treibstoff_prozent < 95:

return False, "Treibstoff unzureichend"
elif wetter != "gut":

return False, f"Wetter ungünstig: {wetter}"
elif not crew_bereit:

return False, "Crew nicht bereit"
elif not systeme_ok:

return False, "Systeme nicht nominal"
else:

return True, "� Startfreigabe erteilt!"

Verschiedene Szenarien testen:
freigabe, grund = startfreigabe_pruefen(98, "gut", True, True)
print(f"Freigabe: {freigabe} - {grund}")

freigabe, grund = startfreigabe_pruefen(90, "gut", True, True)
print(f"Freigabe: {freigabe} - {grund}")

Kompakte Startfreigabe-Funktion

def schnelle_startpruefung(treibstoff, wetter, crew, systeme):
return (treibstoff >= 95 and wetter == "gut" and

crew and systeme)

Verschiedene Raketen einzeln prüfen:
falcon_heavy = schnelle_startpruefung(98, "gut", True, True)
sls = schnelle_startpruefung(92, "gut", True, True)
starship = schnelle_startpruefung(99, "windig", True, True)

print(f"Falcon Heavy: {'� GO' if falcon_heavy else '� NO-GO'}")
print(f"SLS: {'� GO' if sls else '� NO-GO'}")
print(f"Starship: {'� GO' if starship else '� NO-GO'}")

21

Programmieren – D. Straub Funktionen

Reine Funktionen und Nebeneffekte

Reine Funktionen haben zwei wichtige Eigenschaften: 1. Determinismus: Gleiche Eingabe →
Gleiche Ausgabe 2. Keine Nebeneffekte: Ändern nichts außerhalb der Funktion

Reine Funktion
def addiere(a, b):

return a + b

Unreine Funktion (Nebeneffekt: print)
def addiere_mit_ausgabe(a, b):

ergebnis = a + b
print(f"Ergebnis: {ergebnis}") # Nebeneffekt!
return ergebnis

Weitere Beispiele für Nebeneffekte: Ändern globaler Variablen, Schreiben in Dateien, etc.

Vorteile reiner Funktionen

• Testbarkeit: Einfach zu testen (vorhersagbare Ausgabe)
• Debugging: Fehler leichter zu finden
• Wiederverwendbarkeit: Funktionieren in jedem Kontext
• Parallelisierung: Können sicher parallel ausgeführt werden

Reine Funktion - immer testbar
def celsius_zu_fahrenheit(celsius):

return celsius * 9/5 + 32

Test ist einfach und zuverlässig
assert celsius_zu_fahrenheit(0) == 32
assert celsius_zu_fahrenheit(100) == 212

Faustregel: Schreiben Sie so viele Funktionen wie möglich als reine Funktionen!

Aufgabe: Mitternachtsformel

Schreibe eine Funktion mitternachtsformel(a, b, c), die die Lösungen der quadratischen
Gleichung

22

Programmieren – D. Straub Funktionen

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

berechnet. Verwende die Mitternachtsformel:

𝑥1,2 = −𝑏 ±
√

𝑏2 − 4𝑎𝑐
2𝑎

Die Funktion soll drei Rückgabewerte haben: 1. Anzahl der Lösungen (0, 1 oder 2) 2. Erste
Lösung (oder None, wenn keine Lösung) 3. Zweite Lösung (oder None, wenn keine Lösung)

23

Programmieren – D. Straub Schleifen

Schleifen

Wozu Schleifen?

• Wiederholung von Anweisungen automatisieren
• Daten sequenziell verarbeiten (Listen, Strings, Dateien)
• Simulationen und iterative Verfahren umsetzen

Zwei Typen von Schleifen: 1. while-Schleifen: Wiederholung solange Bedingung wahr ist 2.
for-Schleifen: Wiederholung über eine feste Anzahl oder Sammlung

24

Programmieren – D. Straub while-Schleifen

while-Schleifen
Was ist eine while-Schleife?

• Wiederholt Code solange eine Bedingung wahr ist
• Anzahl Wiederholungen ist vorher unbekannt
• Prüft Bedingung vor jedem Durchlauf

Typische Anwendungsfälle:

• Benutzereingaben: Solange bis gültige Eingabe
• Konvergenz: Bis gewünschte Genauigkeit erreicht
• Suche: Bis Element gefunden oder Ende erreicht
• Simulation: Bis Zielzustand oder Zeitlimit
• Datenverarbeitung: Bis Datei/Stream zu Ende

while: Grundform

Die Schleife läuft solange i < 3 wahr ist und zählt dabei von 0 bis 2.

i = 0
while i < 3:

print(i)

25

Programmieren – D. Straub while-Schleifen

i += 1

Endlosschleife vermeiden

Wenn die Zählvariable nicht verändert wird, bleibt die Bedingung immer wahr und die Schleife
läuft endlos.

Schlechte Idee: i wird nie verändert → Endlosschleife
i = 0
while i < 3:

print(i)
i += 1 # vergessen!

while: Zählschleife (wenn Bedingungen flexibler sein sollen)

Mehrere Bedingungen können kombiniert werden, um komplexere Abbruchkriterien zu definieren.

schritte = 0
energie = 10
while energie > 0 and schritte < 5:

print(f"Schritt {schritte}: Energie = {energie}")
energie -= 3
schritte += 1

Sentinel-Schleife (lesen bis Ende)

Die Schleife liest Werte ein, bis ein spezieller Sentinel-Wert (hier: leerer String) eingegeben wird.

zeile = input("Wert (leer beendet): ")
while zeile != "":

print(f"Eingabe war: {zeile}")
zeile = input("Wert (leer beendet): ")

Iteration bis Toleranz (Konvergenz)

Die Schleife läuft, bis ein Zielwert mit einer definierten Genauigkeit erreicht ist.

26

Programmieren – D. Straub while-Schleifen

temp = 20.0
ziel = 22.0
schritt = 0.2
iters = 0
while abs(temp - ziel) > 0.1 and iters < 200:

temp += schritt
iters += 1

print(f"Endtemperatur {temp:.1f}°C nach {iters} Schritten")

break und continuemit while

continue überspringt den Rest des aktuellen Durchlaufs, break beendet die Schleife sofort.

Suche die erste ungerade Zahl > 15 unter den Zahlen 1–20
nummer = 0
gefunden = None
while nummer <= 20:

nummer += 1
if nummer % 2 == 0:

continue # überspringen (gerade Zahlen)
if nummer > 15:

gefunden = nummer
break # abbrechen (erste ungerade > 15)

print(f"Prüfe: {nummer}")
print(f"Gefunden: {gefunden}")

Aufgabe: Geschwindigkeitsregelung

Entwirf eine Regelung, die eine Geschwindigkeit v auf v_target bringt.

• Start: 𝑣0, Ziel: 𝑣target, Proportionalfaktor (0 < 𝑘 ≤ 1)
• Aktualisierung pro Schritt: 𝑣𝑖+1 = 𝑣𝑖 + 𝑘(𝑣target − 𝑣𝑖)
• Stoppe, wenn |𝑣 − 𝑣target| < 𝜀 oder max_steps erreicht
• Ausgabe: Anzahl Schritte und Endwert 𝑣

27

Programmieren – D. Straub for-Schleifen

for-Schleifen
• Wiederholen Code für jedes Element einer Sammlung
• Anzahl Wiederholungen ist meist vorher bekannt
• Durchlaufen sequenziell alle Elemente

Typische Anwendungsfälle:

• Feste Anzahl Wiederholungen: z.B. 10× etwas ausführen
• Berechnung über Sequenzen: Summen, Mittelwerte, Transformationen
• Über Sammlungen iterieren: Siehe Kapitel Datenstrukturen

for: Wiederholungen mit range()

range(n) erzeugt Zahlen von 0 bis n-1 und ermöglicht damit eine feste Anzahl von
Wiederholungen.

for i in range(5): # 0, 1, 2, 3, 4
print(f"Durchlauf {i}")

range(): Integer-Folgen erzeugen

range() ist ein spezieller Typ, der Zahlenfolgen effizient erzeugt, ohne sie alle im Speicher zu
halten.

for i in range(5): # 0,1,2,3,4
print(i)

28

Programmieren – D. Straub for-Schleifen

print(range(5)) # range ist ein spezieller Typ

range(start, stop) und range(start, stop, step)

Mit Start-, Stop- und Schrittweite können beliebige Zahlenfolgen erzeugt werden, auch rückwärts.

for i in range(2, 7): # 2,3,4,5,6
print(i)

for t in range(10, -1, -2): # 10,8,6,4,2,0
print(t)

Über Strings iterieren

Strings können direkt mit for durchlaufen werden, um Zeichen für Zeichen zu verarbeiten.

for ch in "ABCD":
print(ch)

wort = "NASA"
for buchstabe in wort:

print(f"Buchstabe: {buchstabe}")

Anwendung: Zeichen zählen

Eine Schleife über einen String ermöglicht das Zählen bestimmter Zeichen durch bedingte
Inkrementierung.

text = "Programmieren"
anzahl_e = 0
for zeichen in text:

if zeichen == "e":
anzahl_e += 1

print(f"Anzahl 'e': {anzahl_e}")

29

Programmieren – D. Straub for-Schleifen

break und continue in for-Schleifen

Auch in for-Schleifen können continue und break verwendet werden, um die Ausführung zu
steuern.

for zahl in range(1, 11):
if zahl % 3 == 0:

continue # Überspringe Vielfache von 3
if zahl > 7:

break # Stoppe bei Zahlen > 7
print(zahl)

Verschachtelte Schleifen: Multiplikationstabelle

Schleifen können ineinander verschachtelt werden, um über mehrdimensionale Strukturen zu
iterieren.

for i in range(1, 4):
for j in range(1, 4):

print(f"{i} × {j} = {i*j}")
print("---") # Trenner nach jeder Zeile

Aufgabe: Quersumme berechnen

Schreibe eine Funktion, die die Quersumme einer positiven Ganzzahl berechnet.

• Wandle die Zahl in einen String um
• Iteriere über alle Zeichen
• Wandle jedes Zeichen zurück in int und addiere
• Teste mit verschiedenen Zahlen (z.B. 123 → 6, 9876 → 30)

Aufgabe: Batterie-Lade-Simulation

• Batterie startet bei 3.0 V, Ziel: 4.2 V, Sicherheitslimit: 4.5 V
• Spannung steigt pro Zyklus um 0.1 V, max. 50 Zyklen

Aufgaben:
1. Simuliere den Ladeprozess mit einer Schleife 2. Stoppe, wenn Zielspannung, Sicherheislimit
oder max. Zyklen erreicht sind 3. Gib nur alle 5 Zyklen den Status aus 4. Am Ende:

30

Programmieren – D. Straub for-Schleifen

Endspannung und Anzahl Zyklen ausgeben

31

Programmieren – D. Straub Einschub: Wie fange ich an? �

Einschub: Wie fange ich an? �

� Funktion oder Skript?

Erste Entscheidung:

Funktion Skript

Wiederverwendbarer Baustein Vollständiges Programm
Parameter → return input() → print()
Beispiel: def quadrat(x) Beispiel: Taschenrechner

Faustregel:

• Wird es mehrfach verwendet? → Funktion
• Ist es ein eigenständiges Programm? → Skript

Hinweis: Skripte können auch Funktionen enthalten!

� Vorgehen: Funktion schreiben

Schritt 1: Signatur klären

def funktionsname(parameter1, parameter2):
Was kommt rein? Was kommt raus?
return ergebnis

Fragen:

• Welche Eingabewerte? → Parameter
• Was zurückgeben? → return
• Welche Datentypen?

Schritt 2: Implementieren Schirtt 3: Testen

� Vorgehen: Skript schreiben

Denken Sie in 3 Phasen: Eingabe → Verarbeitung → Ausgabe

32

Programmieren – D. Straub Einschub: Wie fange ich an? �

1. EINGABE
name = input("Name? ")
alter = int(input("Alter? "))

2. VERARBEITUNG
geburtsjahr = 2024 - alter

3. AUSGABE
print(f"Hallo {name}!")
print(f"Geboren ca. {geburtsjahr}")

• Woher kommen die Daten? (Tastatur, Datei, …)
• Was muss berechnet werden?
• Wie sieht die Ausgabe aus?

33

Programmieren – D. Straub Datenstrukturen

Datenstrukturen

Warum Datenstrukturen?

Bisher: einzelne Werte in Variablen

messung_1 = 15.2
messung_2 = 16.1
messung_3 = 14.8
messung_4 = 15.9
...

Problem: Unhandlich bei vielen Werten!

Lösung: Datenstrukturen gruppieren zusammengehörige Daten

Überblick: wichtigste Datenstrukturen in Python

Typ Geordnet Veränderbar Duplikate Verwendung

Liste � � � Allgemeine Sammlung
Tupel � � � Unveränderliche Daten
Dictionary � � � (Keys) Key-Value-Paare
Set � � � Eindeutige Elemente
NumPy-Array � � � Numerische Berechnungen

34

Programmieren – D. Straub Listen

Listen

Was sind Listen?

• Geordnete Sammlung von Elementen
• Veränderbar (mutable): Elemente können hinzugefügt, entfernt, geändert werden
• Erlaubt Duplikate
• Kann verschiedene Datentypen enthalten

Listen erstellen

Listen werden mit eckigen Klammern [] erstellt und können beliebig viele Elemente enthalten.

Leere Liste
messungen = []
print(messungen)

Liste mit Werten
temperaturen = [20.5, 21.2, 19.8, 22.1]
print(temperaturen)

Listen aus anderen Objekten erstellen

Mit list() können andere Objekte in Listen umgewandelt werden.

Aus range() erstellen
gerade_zahlen = list(range(0, 10, 2))
print(gerade_zahlen)

Aus String erstellen
buchstaben = list("Python")
print(buchstaben)

Auf Elemente zugreifen: Indexierung

Der Index startet bei 0. Negative Indizes zählen vom Ende her.

35

Programmieren – D. Straub Listen

planeten = ["Merkur", "Venus", "Erde", "Mars"]
print(planeten[0]) # Erstes Element

print(planeten[2]) # Drittes Element

print(planeten[-1]) # Letztes Element

Slicing: Teilbereiche extrahieren

Mit [start:stop:step] können Teillisten extrahiert werden.

zahlen = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
print(zahlen[2:5]) # Index 2 bis 4 (5 exklusiv)

print(zahlen[:4]) # Vom Anfang bis Index 3

print(zahlen[6:]) # Von Index 6 bis zum Ende

print(zahlen[::2]) # Jedes zweite Element

Länge einer Liste

Die Funktion len() gibt die Anzahl der Elemente zurück.

sensoren = ["Temperatur", "Druck", "Beschleunigung"]
anzahl = len(sensoren)
print(f"Anzahl Sensoren: {anzahl}")

Elemente hinzufügen

append() fügt am Ende hinzu, insert() an beliebiger Position.

missionen = ["Apollo 11", "Apollo 13"]
print(f"Vorher: {missionen}")

missionen.append("Artemis I")
print(f"Nach append: {missionen}")

missionen.insert(1, "Apollo 12")
print(f"Nach insert: {missionen}")

36

Programmieren – D. Straub Listen

Elemente entfernen

remove() entfernt nach Wert, pop() entfernt an Position und gibt das Element zurück.

werte = [10, 20, 30, 40, 50]
werte.remove(30) # Entfernt das erste Vorkommen von 30
print(f"Nach remove: {werte}")

letzter = werte.pop() # Entfernt und gibt letztes Element zurück
print(f"Entfernt: {letzter}, Übrig: {werte}")

Elemente suchen

Mit in prüfen, ob ein Element vorhanden ist.

komponenten = ["Triebwerk", "Tank", "Avionik", "Tank"]
print("Avionik" in komponenten) # Prüfen ob Element vorhanden

print("Kabine" in komponenten)

Listen sortieren

Die Methode sort() sortiert die Liste direkt (in-place), sorted() gibt eine neue sortierte Liste
zurück.

hoehen = [350, 120, 280, 95, 410]
hoehen.sort() # Sortiert die Liste direkt
print(hoehen)

werte = [350, 120, 280, 95, 410]
sortiert = sorted(werte) # Gibt neue Liste zurück
print(f"Original: {werte}")
print(f"Sortiert: {sortiert}")

Über Listen iterieren

Mit for-Schleifen können alle Elemente durchlaufen werden.

treibstoffe = ["RP-1", "LOX", "LH2"]
for treibstoff in treibstoffe:

37

Programmieren – D. Straub Listen

print(f"Treibstoff: {treibstoff}")

Aufgabe: Messdatenverarbeitung

Gegeben: Liste mit Temperaturen einer Woche in °C

temperaturen = [15.2, 16.8, 14.5, 18.3, 17.1, 16.9, 15.8]

Aufgaben: 1. Berechne Durchschnittstemperatur 2. Finde Minimum und Maximum 3. Zähle
Tage mit Temperatur > 16°C

38

Programmieren – D. Straub Tupel

Tupel

Was sind Tupel?

• Geordnete Sammlung von Elementen
• Unveränderbar (immutable): Nach Erstellung nicht mehr änderbar
• Erlaubt Duplikate
• Kann verschiedene Datentypen enthalten

Verwendung:

• Daten, die nicht geändert werden sollen
• Rückgabe mehrerer Werte aus Funktionen
• Dictionary-Keys (Listen nicht möglich!)
• Speichereffizienter als Listen

Tupel erstellen

Tupel werden mit runden Klammern () erstellt.

Mit runden Klammern
koordinaten = (51.5, 0.1)
print(koordinaten)

Ohne Klammern (tuple packing)
position = 10.0, 20.0, 30.0
print(position)

Auf Tupel-Elemente zugreifen

Tupel verwenden die gleiche Indexierung wie Listen.

launch_daten = ("Falcon 9", "2023-10-05", 70.0, True)
print(launch_daten[0])

print(launch_daten[-1])

39

Programmieren – D. Straub Tupel

Tuple Unpacking

Tupel-Elemente können direkt mehreren Variablen zugewiesen werden.

koordinaten = (48.1, 11.6)
latitude, longitude = koordinaten
print(f"Breitengrad: {latitude}, Längengrad: {longitude}")

Werte tauschen (sehr elegant in Python!)
a = 5
b = 10
a, b = b, a
print(f"a={a}, b={b}")

Tupel sind unveränderbar

Nach der Erstellung können Tupel-Elemente nicht mehr geändert werden.

punkt = (10, 20)
punkt[0] = 15 # TypeError: 'tuple' object does not support item assignment
print(punkt)

Tupel vs. Listen: Wann was?

Listen verwenden:

• Daten, die sich ändern können
• Sammlung gleichartiger Elemente
• Wenn Reihenfolge wichtig und veränderbar ist

Tupel verwenden:

• Daten, die konstant bleiben sollen
• Unterschiedliche Datentypen gruppieren (z.B. x, y, z)
• Rückgabe mehrerer Werte aus Funktionen
• Als Dictionary-Keys
• Geringfügig schneller und speichereffizienter

40

Programmieren – D. Straub Tupel

Funktionen mit Tupel-Rückgabe

Funktionen können mehrere Werte als Tupel zurückgeben.

def berechne_kreisflaeche(radius):
pi = 3.14159
flaeche = pi * radius ** 2
umfang = 2 * pi * radius
return flaeche, umfang # Gibt Tupel zurück

Unpacking bei Funktionsaufruf
a, u = berechne_kreisflaeche(5.0)
print(f"Fläche: {a:.2f}, Umfang: {u:.2f}")

41

Programmieren – D. Straub Dictionaries

Dictionaries

Was sind Dictionaries?

• Key-Value-Paare: Jedem Schlüssel (Key) ist ein Wert zugeordnet
• Geordnet (seit Python 3.7): Einfügereihenfolge wird beibehalten
• Veränderbar: Keys und Values können hinzugefügt/entfernt werden
• Keys müssen eindeutig und unveränderbar sein (z.B. Strings, Zahlen, Tupel)

Verwendung:

• Strukturierte Daten (z.B. Eigenschaften eines Objekts)
• Schnelles Nachschlagen von Werten
• Konfigurationen
• Zählen von Vorkommen

Dictionary erstellen

Dictionaries werden mit geschweiften Klammern {} und Doppelpunkt : erstellt.

Mit Werten
astronaut = {

"name": "Neil Armstrong",
"mission": "Apollo 11",
"alter": 38,
"gestartet": True

}
print(astronaut)

Auf Werte zugreifen

Werte werden über ihren Schlüssel (Key) abgerufen.

print(astronaut["name"])

Mit get() - sicherer bei fehlenden Keys
print(astronaut.get("mission"))

42

Programmieren – D. Straub Dictionaries

Standardwert wenn Key nicht existiert
print(astronaut.get("geburtsort", "Unbekannt"))

Werte hinzufügen und ändern

Neue Keys werden einfach hinzugefügt, bestehende werden überschrieben.

rakete = {"name": "Falcon 9", "stufen": 2}
Neuen Eintrag hinzufügen
rakete["hersteller"] = "SpaceX"
print(rakete)

Wert ändern
rakete["stufen"] = 3
print(rakete)

Über Dictionaries iterieren

Mit .items() können Keys und Values gleichzeitig durchlaufen werden.

sensoren = {"temp": 23.5, "druck": 1015, "luftf": 45}
Über Key-Value-Paare
for key, value in sensoren.items():

print(f"{key} = {value}")

Verschachtelte Dictionaries

Dictionaries können andere Dictionaries enthalten – nützlich für strukturierte Daten.

flugzeuge = {
"A380": {

"hersteller": "Airbus",
"sitze": 853,
"reichweite_km": 15200

},
"B787": {

"hersteller": "Boeing",
"sitze": 242,

43

Programmieren – D. Straub Dictionaries

"reichweite_km": 14140
}

}
print(flugzeuge["A380"]["sitze"])

Live-Aufgabe: Wörterbuch-Statistik

Schreibe ein Programm, das zählt, wie oft jedes Wort in einem Text vorkommt.

Gegeben:

text = "Python ist toll Python macht Spass toll toll"

Aufgabe: Erstelle ein Dictionary mit der Worthäufigkeit.

Tipp: Verwende .split() um den Text in Wörter zu teilen.

Erwartetes Ergebnis: {"Python": 2, "ist": 1, "toll": 3, ...}

44

Programmieren – D. Straub Sets

Sets

Was sind Sets?

• Ungeordnete Sammlung einzigartiger Elemente
• Keine Duplikate: Jedes Element kommt nur einmal vor

Verwendung:

• Duplikate entfernen
• Mengenoperationen (Vereinigung, Schnitt, Differenz)

Sets erstellen

Sets werden mit geschweiften Klammern {} erstellt und entfernen Duplikate automatisch.

Duplikate werden automatisch entfernt
zahlen = {1, 2, 2, 3, 3, 3, 4}
print(zahlen)

Aus Liste erstellen
liste = [1, 1, 2, 2, 3, 3]
eindeutig = set(liste)
print(eindeutig)

Sets: Duplikate entfernen

Der häufigste Anwendungsfall: Duplikate aus Listen entfernen.

messungen = [15.2, 16.1, 15.2, 17.3, 16.1, 14.8]
eindeutig = list(set(messungen))
print(eindeutig)

Sortiert
sortiert_eindeutig = sorted(set(messungen))
print(sortiert_eindeutig)

45

Programmieren – D. Straub Sets

Wann Sets verwenden?

Sets verwenden:

• Duplikate entfernen
• Schnelle Mitgliedschaftstests
• Mengenoperationen (Vereinigung, Schnitt, Differenz)

Listen verwenden:

• Reihenfolge wichtig
• Duplikate erlaubt

Dictionaries verwenden:

• Key-Value-Zuordnungen

46

Programmieren – D. Straub NumPy-Arrays

NumPy-Arrays

Was ist NumPy?

NumPy (Numerical Python) ist die Standardbibliothek für numerische Berechnungen in Python.

NumPy-Arrays:

• Effiziente mehrdimensionale Arrays
• Viel schneller als Python-Listen für numerische Operationen
• Vektorisierte Operationen (keine Schleifen nötig!)
• Basis für wissenschaftliches Rechnen in Python

Installation: pip install numpy

NumPy importieren und Arrays erstellen

NumPy-Arrays sind wie Listen, aber optimiert für numerische Berechnungen.

import numpy as np
Liste zu Array
messungen = np.array([15.2, 16.1, 14.8, 17.3])
print(messungen)

print(type(messungen))

Arrays vs. Listen: Der Unterschied

NumPy erlaubt vektorisierte Operationen – viel einfacher und schneller!

Listen: Element für Element mit Schleife
liste = [1, 2, 3, 4]
verdoppelt = []
for x in liste:

verdoppelt.append(x * 2)
print(verdoppelt)

NumPy: Vektorisiert (alle auf einmal!)
array = np.array([1, 2, 3, 4])
print(array * 2)

47

Programmieren – D. Straub NumPy-Arrays

Mathematische Funktionen

NumPy bietet viele mathematische Funktionen für Arrays.

werte = np.array([1, 4, 9, 16, 25])
wurzel = np.sqrt(werte)
print(f"Wurzel: {wurzel}")

quadrat = werte ** 2
print(f"Quadrat: {quadrat}")

Statistische Funktionen

NumPy bietet Funktionen für statistische Berechnungen.

temperaturen = np.array([15.2, 16.8, 14.5, 18.3, 17.1])
print(f"Mittelwert: {np.mean(temperaturen):.2f}")

print(f"Min: {np.min(temperaturen)}, Max: {np.max(temperaturen)}")

Mehrdimensionale Arrays

NumPy unterstützt auch mehrdimensionale Arrays (Matrizen).

2D-Array (Matrix)
matrix = np.array([

[1, 2, 3],
[4, 5, 6]

])
print(matrix)

print(f"Shape: {matrix.shape}") # (Zeilen, Spalten)

NumPy vs. Python-Listen: Zusammenfassung

NumPy-Arrays Python-Listen

Geschwindigkeit � Sehr schnell � Langsamer
Speicher � Effizient � Mehr Verbrauch

48

Programmieren – D. Straub NumPy-Arrays

NumPy-Arrays Python-Listen

Operationen � Vektorisiert � Schleifen nötig
Datentypen � Nur gleiche � Gemischt möglich
Größe � Fix � Dynamisch

Faustregel: NumPy für numerische Berechnungen, Listen für alles andere!

Zusammenfassung: Datenstrukturen

Typ Verwendung Beispiel

Liste Geordnete, veränderbare Sammlung [1, 2, 3]
Tupel Unveränderbare Daten, mehrere

Rückgabewerte
(x, y, z)

Dictionary Key-Value-Paare, strukturierte Daten {"name": "ISS", "crew": 7}
Set Eindeutige Elemente,

Mengenoperationen
{1, 2, 3}

NumPy-Array Numerische Berechnungen np.array([1, 2, 3])

Wichtigste Entscheidung: Welche Struktur passt zu meinen Daten?

Aufgabe: Flugdatenanalyse

Gegeben: Messdaten von 5 Flügen

fluege = {
"LH123": {"distanz_km": 850, "dauer_min": 95, "passagiere": 145},
"BA456": {"distanz_km": 1200, "dauer_min": 135, "passagiere": 180},
"AF789": {"distanz_km": 650, "dauer_min": 80, "passagiere": 120},
"KL321": {"distanz_km": 950, "dauer_min": 110, "passagiere": 155},
"LX654": {"distanz_km": 720, "dauer_min": 85, "passagiere": 130}

}

Aufgaben: 1. Berechne Durchschnittsgeschwindigkeit jedes Flugs (km/h) 2. Finde den
schnellsten Flug 3. Erstelle Liste aller Passagierzahlen und berechne Durchschnitt 4. Welche
Flüge hatten mehr als 150 Passagiere?

49

Programmieren – D. Straub Module & Bibliotheken

Module & Bibliotheken

Wiederverwendung: Das Modul-Konzept

Problem: Nicht alles selbst programmieren!

Lösung: Module – vorgefertigte Sammlungen von Funktionen

Analogie: - Bausatz = Programm - Einzelne Teile = Funktionen - Ersatzteillager =
Module/Bibliotheken

Vorteile:

• Code wiederverwendbar
• Getestet und optimiert
• Zeit sparen! ### Was sind Module? Ein Modul ist eine Python-Datei (.py), die

Funktionen, Klassen und Variablen enthält.

Beispiel: Eine Datei umrechnung.py könnte enthalten:

def fuss_zu_meter(fuss):
return fuss * 0.3048

def seemeilen_zu_km(seemeilen):
return seemeilen * 1.852

Das ist ein Modul! Es kann in anderen Programmen wiederverwendet werden.

Module ermöglichen:

• Strukturierung großer Programme
• Wiederverwendung von Code
• Zusammenarbeit im Team

Die Python-Standardbibliothek

Python kommt mit einer umfangreichen Standardbibliothek – eine Sammlung von Modulen,
die direkt verfügbar sind.

Wichtige Module (Auswahl): | Modul | Beschreibung | |——-|————-| | math |
Mathematische Funktionen | | random | Zufallszahlen | | datetime | Datum und Zeit | | os |

50

Programmieren – D. Straub Module & Bibliotheken

Betriebssystem-Funktionen | | json | JSON-Daten verarbeiten | | re | Reguläre Ausdrücke |

Dokumentation: https://docs.python.org/3/library/

Module importieren: Grundformen

Drei wichtige Import-Varianten:

1. Ganzes Modul importieren
import math
ergebnis = math.sqrt(16)
print(ergebnis)

2. Einzelne Funktionen importieren
from math import sqrt, pi
ergebnis = sqrt(16)
print(f"π = {pi:.5f}")

3. Modul mit Alias importieren
import math as m
ergebnis = m.sqrt(16)
print(ergebnis)

Das math-Modul: Mathematische Funktionen

Das math-Modul bietet grundlegende mathematische Funktionen und Konstanten.

import math

Konstanten
print(f"π = {math.pi:.5f}")
print(f"e = {math.e:.5f}")

Grundfunktionen
print(f"√16 = {math.sqrt(16)}")
print(f"2³ = {math.pow(2, 3)}")
print(f"�3.7� = {math.floor(3.7)}")
print(f"�3.2� = {math.ceil(3.2)}")

51

Programmieren – D. Straub Module & Bibliotheken

Trigonometrische Funktionen

Das math-Modul enthält alle wichtigen trigonometrischen Funktionen (arbeiten mit Radiant!).

import math

Umrechnung Grad → Radiant
winkel_grad = 45
winkel_rad = math.radians(winkel_grad)

print(f"sin(45°) = {math.sin(winkel_rad):.4f}")
print(f"cos(45°) = {math.cos(winkel_rad):.4f}")
print(f"tan(45°) = {math.tan(winkel_rad):.4f}")

Anwendung: Flugbahn berechnen

Berechnung der Wurfweite bei schrägen Wurf mit math.

import math

def wurfweite(v0, winkel_grad):
"""Wurfweite bei schrägen Wurf (ohne Luftwiderstand)"""
g = 9.81 # m/s²
winkel_rad = math.radians(winkel_grad)
weite = (v0**2 * math.sin(2 * winkel_rad)) / g
return weite

Beispiel: Kanonenkugel
geschwindigkeit = 100 # m/s
winkel = 45 # Grad
weite = wurfweite(geschwindigkeit, winkel)
print(f"Wurfweite: {weite:.1f} m")

Das random-Modul: Zufallszahlen

Das random-Modul erzeugt Pseudozufallszahlen – wichtig für Simulationen und Spiele.

52

Programmieren – D. Straub Module & Bibliotheken

import random

Zufällige Gleitkommazahl zwischen 0 und 1
print(random.random())

Zufällige Ganzzahl in einem Bereich
wuerfel = random.randint(1, 6)
print(f"Würfelwurf: {wuerfel}")

Zufälliges Element aus Liste
farben = ["rot", "grün", "blau", "gelb"]
zufall = random.choice(farben)
print(f"Zufällige Farbe: {zufall}")

Reproduzierbare Zufallszahlen

Mit seed() können Zufallszahlen reproduzierbar gemacht werden – wichtig für Tests!

import random

Mit Seed: Immer gleiche "Zufalls"-Folge
random.seed(42)
print(random.randint(1, 100))
print(random.randint(1, 100))

Nochmal mit gleichem Seed
random.seed(42)
print(random.randint(1, 100))
print(random.randint(1, 100))

Anwendung: Monte-Carlo-Simulation

Schätzung von � durch zufällige Punkte im Einheitsquadrat.

import random

def schaetze_pi(n):
"""Schätzt π mit Monte-Carlo-Methode"""

53

Programmieren – D. Straub Module & Bibliotheken

treffer = 0
for _ in range(n):

x = random.random()
y = random.random()
if x**2 + y**2 <= 1: # Punkt im Viertelkreis?

treffer += 1
return 4 * treffer / n

Mit unterschiedlichen Stichprobengrößen
print(f"π ≈ {schaetze_pi(1000):.4f} (1.000 Punkte)")
print(f"π ≈ {schaetze_pi(100000):.4f} (100.000 Punkte)")

Module: Best Practices

� Empfohlen:

import math
import random

Klar, woher Funktionen kommen
x = math.sqrt(16)
y = random.randint(1, 10)

� Vermeiden:

from math import *
from random import *

Unklar, woher sqrt kommt - Namenskonflikte möglich!
x = sqrt(16)

Faustregel: Immer explizite Imports – besser lesbar und wartbar!

Hilfe zu Modulen bekommen

Python bietet eingebaute Hilfe für Module und Funktionen.

54

Programmieren – D. Straub Module & Bibliotheken

import math

Alle Funktionen eines Moduls anzeigen
print(dir(math))

Hilfe zu einer Funktion
help(math.sqrt)

Tipp: In Jupyter Notebook: ? für Hilfe, z.B. math.sqrt?

Aufgabe: Raketenstart-Simulation

Simuliere einen Raketenstart mit Zufallselementen.

Aufgaben: 1. Importiere random und math 2. Erzeuge zufällige Startgeschwindigkeit zwischen
7500 und 8500 m/s 3. Erzeuge zufälligen Startwinkel zwischen 85° und 90° 4. Berechne Höhe
nach 60 Sekunden: ℎ = 𝑣0 ⋅ 𝑡 ⋅ sin(𝛼) 5. Führe Simulation 5× aus mit random.seed(i) für i von
0 bis 4 6. Gib für jeden Start aus: Geschwindigkeit, Winkel, erreichte Höhe

Erwartete Ausgabe: 5 verschiedene Szenarien mit jeweils 3 Werten

Drittanbieter-Module: Mehr als die Standardbibliothek

Standardbibliothek reicht nicht immer!

Die Python-Community hat Tausende spezialisierte Module entwickelt:

Bereich Beispiele

Wissenschaft numpy, scipy, pandas
Visualisierung matplotlib, plotly, seaborn
Web requests, flask, django
Machine Learning scikit-learn, tensorflow, pytorch

PyPI (Python Package Index): https://pypi.org/ – über 500.000 Pakete!

Was ist pip?

pip = “Pip Installs Packages” (rekursives Akronym)

55

Programmieren – D. Straub Module & Bibliotheken

• Der Standard-Paketmanager für Python
• Lädt Pakete von PyPI herunter
• Installiert sie automatisch mit allen Abhängigkeiten
• Wird mit Python mitgeliefert (seit Python 3.4)

Analogie:

• App Store für Smartphones = PyPI für Python
• App-Installation = pip install

Pakete mit pip installieren

Grundlegende Befehle:

Paket installieren
pip install paketname

Bestimmte Version installieren
pip install paketname==1.2.3

Paket aktualisieren
pip install --upgrade paketname

Paket deinstallieren
pip uninstall paketname

Installierte Pakete auflisten
pip list

Eigene Module erstellen

Jede Python-Datei ist ein Modul!

Erstelle eine Datei physik.py:

"""Physikalische Konstanten und Berechnungen"""

Konstanten
LICHTGESCHWINDIGKEIT = 299792458 # m/s

56

Programmieren – D. Straub Module & Bibliotheken

GRAVITATIONSKONSTANTE = 6.67430e-11 # m³/(kg·s²)

def energie_masse(masse):
"""Berechnet Energie aus Masse: E = mc²"""
return masse * LICHTGESCHWINDIGKEIT ** 2

def freier_fall_geschwindigkeit(hoehe):
"""Geschwindigkeit im freien Fall"""
g = 9.81 # m/s²
return (2 * g * hoehe) ** 0.5

Eigenes Modul verwenden

Verwendung in einer anderen Datei (z.B. main.py im gleichen Verzeichnis):

import physik

Konstanten verwenden
print(f"c = {physik.LICHTGESCHWINDIGKEIT:,} m/s")

Funktionen verwenden
masse = 0.001 # kg (1 Gramm)
energie = physik.energie_masse(masse)
print(f"Energie von 1g: {energie:.2e} Joule")

Freier Fall aus 100m
v = physik.freier_fall_geschwindigkeit(100)
print(f"Geschwindigkeit: {v:.1f} m/s")

Wichtig: Beide Dateien müssen im gleichen Verzeichnis liegen!

if __name__ == "__main__"

Problem: Code soll nur beim direkten Aufruf ausgeführt werden, nicht beim Import.

test_modul.py
def berechne_etwas(x):

return x * 2

57

Programmieren – D. Straub Module & Bibliotheken

Dieser Block wird nur bei direktem Aufruf ausgeführt
if __name__ == "__main__":

Tests oder Beispiele hier
print("Teste das Modul:")
print(berechne_etwas(5))
print(berechne_etwas(10))

Verwendung:

• python test_modul.py → Tests werden ausgeführt
• import test_modul → Nur Funktion verfügbar, keine Ausgabe

Pakete: Mehrere Module gruppieren (Ausblick)

Für größere Projekte: Module in Paketen organisieren

mein_projekt/
├── main.py
└── physik/

├── __init__.py # Macht physik zum Paket
├── mechanik.py
├── thermodynamik.py
└── elektrik.py

Verwendung:

from physik.mechanik import freier_fall
from physik.elektrik import ohmsches_gesetz

Hinweis: Pakete sind komplexer – für größere Projekte relevant!

58

Programmieren – D. Straub Algorithmen, Pseudocode & Struktogramme

Algorithmen, Pseudocode & Struktogramme

Überblick: Algorithmen, Pseudocode & Struktogramme

Zwei sprachunabhängige Werkzeuge zur Planung von Algorithmen

1. Pseudocode: Erst denken, dann coden! Ein informelles Hilfsmittel
2. Struktogramme: Grafische Darstellung von Algorithmen. Als formalisertes Hilfsmittel

oder zur Dokumentation von Algorithmen

Ziel: Systematisches Vorgehen beim Programmieren

Was ist ein Algorithmus?

Definition: Eine eindeutige, schrittweise Handlungsvorschrift zur Lösung eines Problems

Eigenschaften:

• Endlich: Beschreibung hat endliche Länge
• Ausführbar: Jeder Schritt ist durchführbar
• Determiniert: Jeder Schritt ist eindeutig festgelegt
• Terminiert: Endet nach endlich vielen Schritten

Algorithmus: einfaches Beispiel

Problem: Finde die größte Zahl in einer Liste

Algorithmus in Alltagssprache: 1. Nimm die erste Zahl als „aktuelles Maximum“ 2. Gehe
alle weiteren Zahlen durch 3. Wenn eine Zahl größer ist, merk sie dir als neues Maximum 4. Am
Ende hast du die größte Zahl

Problem: Noch nicht präzise genug für die Umsetzung in Code!

59

Programmieren – D. Straub Pseudocode

Pseudocode

algorithmus finde_maximum(liste):
maximum = erstes Element der Liste

für jedes weitere Element in liste:
wenn Element größer als maximum:

maximum = Element

gib maximum zurück

Warum erst Pseudocode?

Das Problem beim Programmieren:

• Zwei Herausforderungen vermischen sich:
1. Was soll der Algorithmus tun? (Logik)
2. Wie schreibe ich das in Python? (Syntax)

Trennung der Probleme

• Pseudocode = Denkwerkzeug für die Planung
• Erst die Logik klären, dann in Code umsetzen
• Sprachunabhängig: funktioniert für alle Programmiersprachen

Was ist Pseudocode?

Pseudocode = Zwischenschritt zwischen Alltagssprache und Programmcode

Eigenschaften:

• Keine festen Regeln! Jeder kann seinen eigenen Stil entwickeln
• Fokus auf die Logik, nicht auf Syntax-Details
• Auch auf Deutsch bzw. in der eigenen Sprache
• Noch nicht ausführbar

Ziel: Die Was-Frage beantworten, bevor man sich mit der Wie-Frage beschäftigt

Motto: Erst denken, dann coden!

60

Programmieren – D. Straub Pseudocode

Pseudocode: Grundelemente (möglicher Stil)

Anweisungen:

variable = wert
ausgabe "Text"

Verzweigungen:

wenn bedingung:
anweisungen

sonst:
anweisungen

Schleifen:

für i von 1 bis n:
anweisungen

Beispiel: Maximum finden

Pseudocode:

algorithmus finde_maximum(liste):
maximum = erstes Element von liste

für jedes weitere Element in liste:
wenn Element größer als maximum:

maximum = Element

gib maximum zurück

Vorteile: Logik ist klar, keine Syntax-Sorgen

Von Pseudocode zu Python

Pseudocode:

algorithmus finde_maximum(liste):
maximum = erstes Element der Liste
für jedes weitere Element in liste:

61

Programmieren – D. Straub Pseudocode

wenn Element größer als maximum:
maximum = Element

gib maximum zurück

Python:

def finde_maximum(liste):
maximum = liste[0]
for zahl in liste:

if zahl > maximum:
maximum = zahl

return maximum

Ein weiteres Beispiel

Problem: Prüfe, ob eine Zahl gerade ist

Pseudocode:

algorithmus ist_gerade(n):
wenn n ohne Rest durch 2 teilbar:

gib True zurück
sonst:

gib False zurück

Python:

def ist_gerade(n):
if n % 2 == 0:

return True
else:

return False

� Gruppenarbeit

Aufgabe: Schreiben Sie Pseudocode für folgende Funktion aus dem letzten Praktikum:

def ist_prim(zahl):
"""Gibt aus, ob `zahl` eine Primzahl ist."""
if zahl == 1:

62

Programmieren – D. Straub Pseudocode

return False
for teiler in range(2, zahl):

if zahl % teiler == 0:
return False

if teiler**2 > zahl:
break

return True

63

Programmieren – D. Straub Struktogramme

Struktogramme

Struktogramme = Grafische Darstellung von Algorithmen

Entwickelt von: Nassi & Shneiderman (1973)

Ziel: Strukturiertes Programmieren fördern

Die drei Grundstrukturen

Jeder Algorithmus besteht aus drei Grundelementen:

1. Sequenz: Anweisungen nacheinander
2. Verzweigung: Fallunterscheidung (if/else)
3. Wiederholung: Schleifen (for/while)

Struktogramme stellen diese Strukturen grafisch dar.

Grundregel: Der Kasten

Jedes Struktogramm ist ein Rechteck

• Von oben nach unten lesen
• Jede Anweisung in einem horizontalen Streifen
• Kein „Springen“ zwischen Kästen

64

Programmieren – D. Straub Struktogramme

Struktur 1: Sequenz

Sequenz = Anweisungen nacheinander ausführen

Beispiel in Python:

x = 5
y = 3
summe = x + y
print(summe)

Struktur 2: Verzweigung (einfach)

Einfache Verzweigung = if ohne else

Beispiel in Python:

65

Programmieren – D. Straub Struktogramme

x = int(input("Gib eine Zahl ein: "))
if x > 0:

print("positiv")

Wichtig: Die Bedingung steht oben, der “Ja”-Zweig darunter

Struktur 2: Verzweigung (zweiseitig)

Zweiseitige Verzweigung = if-else

Beispiel in Python:

if x > 0:
print("positiv")

else:
print("nicht positiv")

66

Programmieren – D. Straub Struktogramme

Beispiel: Gerade/Ungerade prüfen

Python:

n = int(input("Gib eine Zahl ein: "))
if n % 2 == 0:

print("gerade")
else:

print("ungerade")

Verschachtelte Verzweigungen

Python:

temp = float(input("Temperatur in °C: "))
if temp < 0:

print("Eis")
elif temp < 100:

67

Programmieren – D. Straub Struktogramme

print("Wasser")
else:

print("Dampf")

Struktur 3: Wiederholung (for-Schleife)

Zählschleife = for-Schleife mit festem Bereich

Beispiel in Python:

for i in range(1, 6):
print(i)

68

Programmieren – D. Straub Struktogramme

Struktur 3: Wiederholung (while-Schleife)

Bedingungsschleife = while-Schleife

Beispiel in Python:

i = 1
while i <= 5:

print(i)
i = i + 1

Verschachtelte Strukturen

Strukturen können ineinander verschachtelt werden.

Beispiel: Verzweigung in einer Schleife

Python:

for i in range(1, 6):
if i % 2 == 0:

print(f"{i} ist gerade")
else:

print(f"{i} ist ungerade")

69

Programmieren – D. Straub Struktogramme

Vollständiges Beispiel: Maximum finden

Python:

def finde_maximum(liste):
maximum = liste[0]
for zahl in liste:

if zahl > maximum:
maximum = zahl

return maximum

70

Programmieren – D. Straub Struktogramme

� Gruppenarbeit

Aufgabe: Erstellen Sie ein Struktogramm für folgende Funktion aus dem letzten Praktikum:

def ist_prim(zahl):
"""Gibt aus, ob `zahl` eine Primzahl ist."""
if zahl == 1:

return False
for teiler in range(2, zahl):

if zahl % teiler == 0:
return False

if teiler**2 > zahl:
break

return True

Zusammenfassung

Pseudocode:

• Werkzeug zum Planen: Erst denken, dann coden!
• Keine festen Regeln, aber strukturiert
• Hilft, die Logik zu klären

Struktogramme:

• Grafische Darstellung von Algorithmen
• Drei Grundstrukturen: Sequenz, Verzweigung, Wiederholung
• Nassi-Shneiderman-Notation

71

Programmieren – D. Straub Arbeiten mit Zeichenketten

Arbeiten mit Zeichenketten

Überblick: Strings in der Praxis

Wiederholung aus Kapitel 2:

• Strings mit "...", '...' oder """...""" erstellen
• f-Strings für Formatierung: f"{variable}", f"{wert:.2f}"
• Unicode-Unterstützung "�", Escape Sequences "\n", "\t", "\\", "\"", "\'"

Heute: 1. String-Indizierung & Slicing (Zugriff auf Teile) 2. String-Methoden (Bearbeitung &
Analyse) 3. Praxisanwendungen: Validierung, Textverarbeitung, Verschlüsselung

Wiederholung: Strings sind Sequenzen

Strings sind unveränderbare Sequenzen von Zeichen – man kann auf einzelne Zeichen
zugreifen.

text = "Python"
print(f"Länge: {len(text)}")
print(f"Erstes Zeichen: {text[0]}")
print(f"Letztes Zeichen: {text[-1]}")

Strings sind unveränderbar!
text = "Python"
text[0] = "J" # TypeError!
Stattdessen: neuen String erzeugen
text = "J" + text[1:]
print(text)

String-Indizierung: Positive und negative Indizes

wort = "Python"
012345 (positive Indizes)
-6-5-4-3-2-1 (negative Indizes)

print(wort[0]) # P
print(wort[5]) # n

72

Programmieren – D. Straub Arbeiten mit Zeichenketten

print(wort[-1]) # n (letztes Zeichen)
print(wort[-2]) # o (vorletztes Zeichen)

Merke: Negative Indizes zählen von hinten – genau wie in Listen!

String-Iteration: Zeichen durchlaufen

Mit for-Schleife durch String iterieren
for zeichen in "Python":

print(zeichen)

Mit Index und enumerate()
for i, zeichen in enumerate("Python"):

print(f"Index {i}: {zeichen}")

String-Slicing: Teilstrings extrahieren

Syntax: string[start:stop:step] – alle drei Teile optional. Genau wie bei Listen!

alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

print(alphabet[0:5]) # ABCDE
print(alphabet[5:10]) # FGHIJ
print(alphabet[:5]) # ABCDE (start fehlt = 0)
print(alphabet[20:]) # UVWXYZ (stop fehlt = Ende)
print(alphabet[::2]) # ACEGIKMOQSUWY (jedes 2. Zeichen)
print(alphabet[::-1]) # Umkehrung!

Slicing-Beispiel: String umkehren

nachricht = "Hallo Welt"
umgekehrt = nachricht[::-1]
print(umgekehrt)

Praktische Anwendung: Palindrom-Check

73

Programmieren – D. Straub Arbeiten mit Zeichenketten

def ist_palindrom(text):
text = text.lower() # wandle in Kleinbuchstaben um – Details im nächsten Abschnitt
return text == text[::-1]

print(ist_palindrom("Anna"))
print(ist_palindrom("Lagerregal"))
print(ist_palindrom("Hallo"))

Wichtige String-Methoden: Übersicht

Methode Beschreibung

upper(), lower() Groß-/Kleinschreibung
strip(), lstrip(), rstrip() Whitespace entfernen
split(), join() Trennen und Verbinden
replace() Text ersetzen
startswith(), endswith() Präfix/Suffix prüfen
find(), count() Suchen und Zählen
isdigit(), isalpha() Zeichentyp prüfen

Groß- und Kleinschreibung

text = "Python Programmierung"

print(text.upper()) # PYTHON PROGRAMMIERUNG
print(text.lower()) # python programmierung
print(text.capitalize()) # Python programmierung
print(text.title()) # Python Programmierung

Case-insensitiver Vergleich
email1 = "Max.Mustermann@Gmail.COM"
email2 = "max.mustermann@gmail.com"
print(email1.lower() == email2.lower())

74

Programmieren – D. Straub Arbeiten mit Zeichenketten

Sonderfall: ß und casefold()

Problem: lower() wandelt nur in Kleinbuchstaben um, entfernt aber nicht alle
Fallunterscheidungen

Beispiel: Deutsches ß
print("Straße".upper()) # STRASSE (ß → SS)
print("STRASSE".lower()) # strasse (SS → ss)
print("Straße".lower()) # straße (ß bleibt ß)
print("Straße".lower() == "STRASSE".lower()) # False (straße ≠ strasse)

casefold() ist aggressiver: entfernt alle Fallunterscheidungen (z.B. ß → ss)

print("Straße".casefold()) # strasse
print("STRASSE".casefold()) # strasse
print("Straße".casefold() == "STRASSE".casefold()) # True

Faustregel: Für case-insensitive Vergleiche immer casefold() verwenden! ### Whitespace
entfernen

strip() entfernt Leerzeichen, Tabs, Newlines am Anfang/Ende
eingabe = " Hallo Welt \n"
print(f"'{eingabe}'")
print(f"'{eingabe.strip()}'")

strip() kann auch andere Zeichen entfernen
url = "https://example.com/"
print(url.strip("/")) # https://example.com (nur / wird entfernt)

lstrip() und rstrip() für links/rechts
pfad = "///home/user/file.txt"
print(pfad.lstrip("/")) # home/user/file.txt

Split und Join: Text zerlegen und zusammenfügen

split() zerlegt String in Liste
satz = "Python ist eine tolle Sprache"
woerter = satz.split()
print(woerter)

75

Programmieren – D. Straub Arbeiten mit Zeichenketten

Mit Trennzeichen
csv_zeile = "Max,Mustermann,25,Berlin"
daten = csv_zeile.split(",")
print(daten)

join() fügt Liste zu String zusammen
woerter = ["Python", "ist", "toll"]
satz = " ".join(woerter)
print(satz)

Split/Join Anwendung: Wörter umkehren

def umgekehrte_woerter(satz):
"""Kehrt die Reihenfolge der Wörter um."""
woerter = satz.split()
return " ".join(reversed(woerter))

satz = "Hallo Welt wie geht es dir"
print(umgekehrte_woerter(satz))

Text ersetzen

Datenpfade normalisieren
pfad = "C:\\Users\\David\\Documents\\data.txt"
unix_pfad = pfad.replace("\\", "/")
print(unix_pfad)

Telefonnummern normalisieren
telefon = "+49 (89) 123-456"
normalisiert = telefon.replace(" ", "").replace("(", "").replace(")", "").replace("-", "")
print(normalisiert)

URL-Parameter entfernen
url = "https://example.com/seite.html?ref=123&utm=abc"
saubere_url = url.split("?")[0]
print(saubere_url)

76

Programmieren – D. Straub Arbeiten mit Zeichenketten

Präfix und Suffix prüfen

dateiname = "bericht_2025.pdf"

if dateiname.endswith(".pdf"):
print("PDF-Datei gefunden")

url = "https://www.example.com"

if url.startswith("https://"):
print("Sichere Verbindung")

elif url.startswith("http://"):
print("Unsichere Verbindung")

Mehrere Möglichkeiten prüfen (Tupel!)
bild = "foto.jpg"
if bild.endswith((".jpg", ".png", ".gif")):

print("Bilddatei")

Suchen in Strings

Textanalyse: Finde Position eines Keywords in einem Artikel
artikel = """Machine Learning revolutioniert die Industrie.
Deep Learning ermöglicht neue Anwendungen."""

find() gibt Index zurück (oder -1 wenn nicht gefunden)
pos = artikel.find("Learning")
print(f"Erste Position von 'Learning': {pos}")

count() zählt Vorkommen - praktisch für Keyword-Analyse
anzahl = artikel.count("Learning")
print(f"'Learning' kommt {anzahl}× vor")

Praktisches Beispiel: Prüfe ob API-Response erfolgreich war
response = '{"status": "success", "data": {...}}'
if response.find('"status": "success"') != -1:

print("API-Aufruf erfolgreich")

77

Programmieren – D. Straub Arbeiten mit Zeichenketten

Zeichentyp prüfen

Verschiedene is*-Methoden
print("123".isdigit()) # True
print("12.3".isdigit()) # False (Punkt ist keine Ziffer!)
print("abc".isalpha()) # True
print("abc123".isalnum()) # True (Buchstaben oder Ziffern)
print(" ".isspace()) # True

Praktisch für Validierung
alter = input("Alter: ")
if alter.isdigit():

print(f"Alter: {int(alter)}")
else:

print("Ungültige Eingabe")

Anwendung: E-Mail-Validierung (vereinfacht)

def ist_gueltige_email(email):
"""Einfache E-Mail-Validierung (nicht vollständig!)."""
Grundlegende Checks
if email.count("@") != 1:

return False

lokaler_teil, domain = email.split("@")

Lokaler Teil und Domain dürfen nicht leer sein
if not lokaler_teil or not domain:

return False

Domain muss einen Punkt enthalten
if "." not in domain:

return False

Domain-Endung muss mindestens 2 Zeichen haben
endung = domain.split(".")[-1]

78

Programmieren – D. Straub Arbeiten mit Zeichenketten

if len(endung) < 2:
return False

return True

Tests
print(ist_gueltige_email("max@example.com"))
print(ist_gueltige_email("max@example"))
print(ist_gueltige_email("max.com"))

Anwendung: Dateinamen verarbeiten

def parse_dateiname(pfad):
"""Extrahiert Informationen aus einem Dateipfad."""
Letzten Teil des Pfads nehmen (Dateiname)
dateiname = pfad.split("/")[-1]

Name und Erweiterung trennen
if "." in dateiname:

name, erweiterung = dateiname.rsplit(".", 1)
else:

name, erweiterung = dateiname, ""

return {
"pfad": pfad,
"dateiname": dateiname,
"name": name,
"erweiterung": erweiterung

}

info = parse_dateiname("/home/user/dokumente/bericht_2025.pdf")
print(info)

79

Programmieren – D. Straub Arbeiten mit Zeichenketten

String-Methoden verketten

Methoden können verkettet werden
text = " Python Programmierung "

Mehrere Operationen hintereinander
ergebnis = text.strip().lower().replace(" ", "_")
print(ergebnis)

Praktisch für Datenbereinigung
email = " Max.Mustermann@GMAIL.COM "
sauber = email.strip().lower()
print(sauber)

f-Strings: Formatierungsmöglichkeiten

Format Bedeutung Beispiel Ergebnis

.2f Fließkommazahl mit 2
Nachkommastellen

f"{3.14159:.2f}" 3.14

.0f Fließkommazahl ohne
Nachkommastellen

f"{3.14159:.0f}" 3

d Ganzzahl (Integer) f"{42:d}" 42
>10 Rechtsbündig, Breite 10 f"{42:>10}" 42
<10 Linksbündig, Breite 10 f"{'Hi':<10}" Hi
^10 Zentriert, Breite 10 f"{'Hi':^10}" Hi
05d Mit Nullen auffüllen,

Breite 5
f"{42:05d}" 00042

, Tausendertrennzeichen f"{1000000:,}" 1,000,000
.2% Prozent mit 2

Nachkommastellen
f"{0.1234:.2%}" 12.34%

f-Strings: Tabellen formatieren

Anwendung für tabellarische Ausgaben:

80

Programmieren – D. Straub Arbeiten mit Zeichenketten

studenten = [
("Alice", 23, 1.7),
("Bob", 25, 2.3),
("Charlie", 22, 1.9)

]

Header
print(f"{'Name':<10} {'Alter':>5} {'Note':>5}")
print("-" * 25)

Daten
for name, alter, note in studenten:

print(f"{name:<10} {alter:>5} {note:>5.1f}")

Caesar-Verschlüsselung: Einführung

Historischer Kontext:

• Von Julius Caesar verwendet (100-44 v. Chr.)
• Einfache Substitutions-Verschlüsselung
• Jeder Buchstabe wird um n Positionen verschoben

Beispiel (Verschiebung = 3):

A B C D E F G ... X Y Z
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
D E F G H I J ... A B C

Klartext: HALLO Geheimtext: KDOOR

81

Programmieren – D. Straub Arbeiten mit Zeichenketten

Caesar-Verschlüsselung: Algorithmus

Idee: 1. Für jeden Buchstaben: - Finde Position im Alphabet (A=0, B=1, …, Z=25) - Addiere
Verschiebung - Rechne Modulo 26 (zurück zum Anfang bei Überlauf) - Wandle zurück in
Buchstaben

Beispiel (Verschiebung = 3):

• H → Position 7 → 7+3=10 → K
• A → Position 0 → 0+3=3 → D
• L → Position 11 → 11+3=14 → O ### Aufgabe: Caesar-Verschlüsselung implementieren

Teil 1: Verschlüsselung

Schreibe eine Funktion caesar_verschluesseln(text, verschiebung), die einen Text
verschlüsselt.

82

Programmieren – D. Straub Arbeiten mit Zeichenketten

Anforderungen:

• Wandle Text in Großbuchstaben um
• Verschiebe jeden Buchstaben um verschiebung Positionen
• Verwende Modulo 26 für Überlauf (Z+1 = A)
• Nicht-Buchstaben bleiben unverändert

Beispiel:

print(caesar_verschluesseln("HALLO WELT", 3)) # KDOOR ZHOW

Hinweise: alphabet.find(zeichen) für Position, text.upper() für Großbuchstaben

Aufgabe: Caesar-Entschlüsselung

Teil 2: Entschlüsselung

Schreibe eine Funktion caesar_entschluesseln(text, verschiebung), die einen
Caesar-verschlüsselten Text entschlüsselt.

Tipp: Überlege, wie Entschlüsselung und Verschlüsselung zusammenhängen! - Verschiebung um
+3 verschlüsselt - Verschiebung um -3 entschlüsselt

Beispiel:

geheimtext = "KDOOR ZHOW"
klartext = caesar_entschluesseln(geheimtext, 3)
print(klartext) # HALLO WELT

Aufgabe: Brute-Force-Angriff

Teil 3: Alle Schlüssel ausprobieren

Schreibe eine Funktion caesar_brechen(geheimtext), die alle 26 möglichen Verschiebungen
ausprobiert.

Anforderungen:

• Probiere Verschiebungen von 0 bis 25
• Gib für jede Verschiebung das Ergebnis aus
• Format: "Verschiebung 3: HALLO WELT"

Erkenntnis: Caesar-Verschlüsselung ist unsicher – nur 26 mögliche Schlüssel!

83

Programmieren – D. Straub Arbeiten mit Zeichenketten

Zusammenfassung: Arbeiten mit Zeichenketten

String-Grundlagen:

• Indizierung, Slicing, Iteration
• Strings sind unveränderbar

Wichtige Methoden:

• Groß-/Kleinschreibung: upper(), lower()
• Bereinigung: strip(), replace()
• Zerlegen/Verbinden: split(), join()
• Suchen: find(), count(), startswith(), endswith()
• Prüfen: isdigit(), isalpha(), etc.

Reverse Words: Wörter eines Satzes umkehren

Gegeben ist ein Satz – kehre die Reihenfolge der Wörter um.

satz = "Leise rieselt der Schnee"

Ziel:
"Schnee der rieselt Leise"

Hinweise:

• Satz in Wörter zerlegen
• Reihenfolge umkehren
• Wörter wieder zusammensetzen

84

Programmieren – D. Straub Visualisierung von Funktionen

Visualisierung von Funktionen

Was ist matplotlib?

matplotlib ist die Standard-Bibliothek für Datenvisualisierung in Python.

Hauptmerkmale:

• Erstellen von Plots, Diagrammen, Grafiken
• Publikationsreife Qualität
• Hochgradig anpassbar
• Integration mit NumPy
• Open Source

Installation: pip install matplotlib

Beispiele

pyplot: Die zentrale Schnittstelle

pyplot ist das Hauptmodul für die Erstellung von Plots – ähnlich wie MATLAB.

import matplotlib.pyplot as plt

Einfachster Plot
plt.plot([1, 2, 3, 4])
plt.show()

Konvention: Import als plt

Mehr zu plt.show()

In Python-Skripten (Terminal):

• plt.show() ist erforderlich
• Öffnet den Plot in einem neuen Fenster

85

https://matplotlib.org/stable/plot_types/index.html

Programmieren – D. Straub Visualisierung von Funktionen

• Programm wartet, bis Fenster geschlossen wird

In Jupyter Notebooks:

• plt.show() ist nicht nötig
• Plots werden automatisch angezeigt

Erster einfacher Plot

Ein Plot zeigt die Beziehung zwischen x- und y-Werten.

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4]
y = [0, 1, 4, 9, 16]

plt.plot(x, y)
plt.show()

Titel und Achsenbeschriftungen

Mit title(), xlabel() und ylabel() wird der Plot beschriftet.

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
y = [0, 1, 4, 9, 16, 25]

plt.plot(x, y)
plt.title("Quadratfunktion")
plt.xlabel("x-Werte")
plt.ylabel("y-Werte")
plt.show()

Gitter hinzufügen

Mit grid() wird ein Gitter zum besseren Ablesen angezeigt.

86

Programmieren – D. Straub Visualisierung von Funktionen

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
y = [0, 1, 4, 9, 16, 25]

plt.plot(x, y)
plt.title("Quadratfunktion")
plt.xlabel("x")
plt.ylabel("y")
plt.grid(True)
plt.show()

Mehrere Linien in einem Plot

Mehrere plot()-Aufrufe zeichnen mehrere Linien in denselben Plot.

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
y1 = [0, 1, 4, 9, 16, 25]
y2 = [0, 2, 8, 18, 32, 50]

plt.plot(x, y1)
plt.plot(x, y2)
plt.title("Zwei Funktionen")
plt.xlabel("x")
plt.ylabel("y")
plt.grid(True)
plt.show()

Linien-Stile

Mit dem dritten Parameter können verschiedene Linien-Stile gewählt werden.

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]

87

Programmieren – D. Straub Visualisierung von Funktionen

y = [0, 1, 4, 9, 16, 25]

plt.plot(x, y, "--") # Gestrichelte Linie
plt.title("Gestrichelte Linie")
plt.xlabel("x")
plt.ylabel("y")
plt.grid(True)
plt.show()

Wichtige Stile: "-" (durchgezogen), "--" (gestrichelt), "-." (Strich-Punkt), ":" (gepunktet)

Marker-Stile: Punkte anzeigen

Mit Markern werden die Datenpunkte sichtbar gemacht.

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
y = [0, 1, 4, 9, 16, 25]

plt.plot(x, y, "o") # Nur Kreise, keine Linie
plt.title("Datenpunkte")
plt.xlabel("x")
plt.ylabel("y")
plt.grid(True)
plt.show()

Wichtige Marker: "o" (Kreis), "s" (Quadrat), "^" (Dreieck), "*" (Stern), "+" (Plus), "x"
(Kreuz)

Linien und Marker kombinieren

Linien-Stil und Marker können kombiniert werden.

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
y = [0, 1, 4, 9, 16, 25]

88

Programmieren – D. Straub Visualisierung von Funktionen

plt.plot(x, y, "o-") # Kreise verbunden mit Linie
plt.title("Linie mit Markern")
plt.xlabel("x")
plt.ylabel("y")
plt.grid(True)
plt.show()

Farben festlegen

Farben können mit Buchstaben oder Namen angegeben werden.

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
y1 = [0, 1, 4, 9, 16, 25]
y2 = [0, 2, 8, 18, 32, 50]

plt.plot(x, y1, "r-") # Rot, durchgezogen
plt.plot(x, y2, "b--") # Blau, gestrichelt
plt.title("Farbige Linien")
plt.xlabel("x")
plt.ylabel("y")
plt.grid(True)
plt.show()

Wichtige Farbcodes: "r" (rot), "g" (grün), "b" (blau), "c" (cyan), "m" (magenta), "y" (gelb),
"k" (schwarz)

Farben mit Namen

Farben können auch mit vollständigen Namen angegeben werden.

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4]
y = [0, 1, 4, 9, 16]

89

Programmieren – D. Straub Visualisierung von Funktionen

plt.plot(x, y, color="orange", linestyle="-", marker="o")
plt.title("Orangene Linie")
plt.xlabel("x")
plt.ylabel("y")
plt.grid(True)
plt.show()

Beispiele: "orange", "purple", "brown", "pink", "gray"

Stil-String kompakt

Farbe, Linien-Stil und Marker können in einem String kombiniert werden.

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
y1 = [0, 1, 4, 9, 16, 25]
y2 = [0, 2, 8, 18, 32, 50]

plt.plot(x, y1, "ro-") # Rot, Kreise, durchgezogen
plt.plot(x, y2, "bs--") # Blau, Quadrate, gestrichelt
plt.title("Kombinierte Stile")
plt.xlabel("x")
plt.ylabel("y")
plt.grid(True)
plt.show()

Format: "[farbe][marker][linie]", z.B. "ro-", "gs--", "b^:"

90

Programmieren – D. Straub List Comprehensions

List Comprehensions

Was sind List Comprehensions?

Kompakte Syntax zum Erstellen von Listen aus bestehenden Sequenzen.

Vergleich:

Mit for-Schleife:
quadrate = []
for x in range(5):

quadrate.append(x ** 2)
print(quadrate)

Mit List Comprehension:
quadrate = [x ** 2 for x in range(5)]
print(quadrate)

Viel kürzer und lesbarer!

Grundstruktur

Syntax:

neue_liste = [ausdruck for element in sequenz]

Weitere Beispiele:

Buchstaben aus String extrahieren
buchstaben = [zeichen for zeichen in "Python"]
print(buchstaben)

Celsius zu Fahrenheit
celsius = [0, 10, 20, 30]
fahrenheit = [c * 9/5 + 32 for c in celsius]
print(fahrenheit)

Wann List Comprehensions verwenden?

Vorteile:

91

Programmieren – D. Straub List Comprehensions

• Kompakter und lesbarer Code

Verwenden für:

• Einfache Transformationen
• Abbildungen (mapping)

Vermeiden wenn:

• Zu komplex
• Nebeneffekte nötig (z.B. print())
• Mehrere Schritte pro Element

Faustregel: Wenn die Comprehension mehr als eine Zeile braucht, verwende eine normale
Schleife!

List Comprehensions für Datenreihen

Wozu sind List Comprehensions nützlich beim Plotten?

Beim Erstellen von Plots brauchen wir oft Datenreihen (x- und y-Werte).

x-Werte von 0 bis 10 in 0.5er-Schritten
x = [i * 0.5 for i in range(21)]
print(x) # [0.0, 0.5, 1.0, 1.5, ..., 10.0]

y-Werte als Quadrate der x-Werte
y = [xi ** 2 for xi in x]
print(y) # [0.0, 0.25, 1.0, 2.25, ..., 100.0]

Vorteil: Kompakt, lesbar und schnell!

Funktionen plotten: Vollständiges Beispiel

Mit List Comprehensions können wir elegant mathematische Funktionen plotten.

import matplotlib.pyplot as plt

x-Werte generieren
x = [i * 0.1 for i in range(101)] # 0.0 bis 10.0 in 0.1er-Schritten

y-Werte mit Funktion berechnen

92

Programmieren – D. Straub List Comprehensions

def f(x):
return x ** 2

y = [f(xi) for xi in x] # Mapping: Funktion auf jedes x anwenden

Plotten
plt.plot(x, y, 'b-')
plt.title("Funktion f(x) = x²")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.grid(True)
plt.show()

Anwendung: Flugbahn darstellen

Darstellung einer Wurfparabel mit berechneten Werten.

import matplotlib.pyplot as plt

Flugbahn berechnen (vereinfacht)
t_werte = [i * 0.5 for i in range(11)] # Zeit in Sekunden
x_werte = [t * 50 for t in t_werte] # Horizontale Distanz
y_werte = [t * 30 - 5 * t**2 for t in t_werte] # Höhe

plt.plot(x_werte, y_werte, 'b-o')
plt.title("Flugbahn eines geworfenen Balls")
plt.xlabel("Distanz (m)")
plt.ylabel("Höhe (m)")
plt.grid(True)
plt.show()

Besondere Punkte hervorheben

Wie hebt man einzelne Punkte hervor?

Einfach einen zweiten plot()-Aufruf mit nur den speziellen Punkten:

93

Programmieren – D. Straub List Comprehensions

Funktion als Linie
plt.plot(x, y, 'b-', label='Funktion')

Spezielle Punkte als Marker
plt.plot([x1, x2], [y1, y2], 'ro', markersize=10, label='Nullstellen')

Wichtig:

• Zweiter plot()-Aufruf mit nur den Punktkoordinaten
• Größere Marker mit markersize Parameter
• Andere Farbe zur Unterscheidung ### Aufgabe: Funktionen visualisieren

Erstellen Sie einen Plot mit drei mathematischen Funktionen für x-Werte von 0 bis 10.

Funktionen: 1. Linear: 𝑓(𝑥) = 2𝑥 2. Quadratisch: 𝑔(𝑥) = 𝑥2 3. Kubisch: ℎ(𝑥) = 0.1𝑥3

Anforderungen:

• Verwenden Sie List Comprehensions für die y-Werte
• Verschiedene Farben und Linien-Stile
• Titel und Achsenbeschriftungen
• Gitter aktivieren

Zusatzaufgabe: Nullstellen markieren

Plotten Sie die Funktion 𝑓(𝑥) = 𝑥2 − 4 für x-Werte von -3 bis 3.

Aufgaben: 1. Plotten Sie die Funktion als blaue durchgezogene Linie 2. Markieren Sie die
beiden Nullstellen (𝑥 = −2 und 𝑥 = 2) als große rote Punkte 3. Fügen Sie eine Legende hinzu 4.
Vergessen Sie nicht Titel, Achsenbeschriftungen und Gitter

Tipp: Die Nullstellen liegen bei 𝑦 = 0!

Zusammenfassung: matplotlib-Grundlagen

Wichtigste Funktionen:

• plt.plot(x, y) – Linie zeichnen
• plt.title() – Titel setzen
• plt.xlabel(), plt.ylabel() – Achsen beschriften
• plt.grid() – Gitter anzeigen

94

Programmieren – D. Straub List Comprehensions

• plt.show() – Plot anzeigen

Stile:

• Linien: '-', '--', '-.', ':'
• Marker: 'o', 's', '^', '*', '+', 'x'
• Farben: 'r', 'g', 'b', 'c', 'm', 'y', 'k' oder Namen

Kombination: 'ro-' = rot, Kreise, durchgezogen

95

Programmieren – D. Straub Zahlensysteme

Zahlensysteme

Überblick: Zahlensysteme

Warum ist dieses Thema wichtig?

• Computer arbeiten intern mit Binärzahlen (0 und 1)
• Verständnis der Zahlenrepräsentation erleichtert Programmieren und Fehlersuche
• Beeinflusst Speicherbedarf, Rechengeschwindigkeit und Effizienz von Programmen

Themen:

1. Bits und Bytes
2. Dezimal-, Binär-, Hexadezimalsystem
3. Umrechnung zwischen Zahlensystemen
4. Gleitkommazahlen

Bits und Bytes: Grundlagen

Bit (Binary Digit) – kleinste Informationseinheit - Kann nur zwei Zustände annehmen: 0 oder 1 -
Physikalisch: Strom an/aus, magnetisch nord/süd, etc.

Byte – Gruppe von 8 Bits - Standard-Einheit für Speicher und Daten - Ein Byte kann 28 = 256
verschiedene Werte darstellen (0–255)

Beispiel:

1 Bit: 0 oder 1
1 Byte: 10110101 (8 Bits zusammen)

Warum Bits und Bytes?

Historische Entwicklung:

• Frühe Computer: verschiedene Wortgrößen (4, 6, 7 Bits)
• 8-Bit-Byte setzte sich als Standard durch
• Praktisch für Zeichenkodierung (ASCII: 7 Bit, erweitert 8 Bit)

Moderne Bedeutung:

• Prozessoren arbeiten mit Wortgrößen von 32 oder 64 Bit

96

Programmieren – D. Straub Zahlensysteme

• Speicher wird in Bytes adressiert
• Datentypen haben feste Größen in Bytes:

– int in Python: variabel
– int32 in NumPy: 4 Bytes = 32 Bits
– float64: 8 Bytes = 64 Bits

7-Bit-ASCII

Was kann man mit n Bits darstellen?

Mit 𝑛 Bits können 2𝑛 verschiedene Werte dargestellt werden.

Bits Anzahl Werte Bereich (vorzeichenlos) Beispiel

1 2 0–1 Boolesche Werte
4 16 0–15 Hexadezimal-

Ziffer
8 256 0–255 1 Byte,

ASCII-Zeichen
16 65.536 0–65.535 uint16
32 ~4,3 Mrd. 0–4.294.967.295 uint32, IPv4
64 ~18 Trillionen 0–264 − 1 uint64

Merke: Jedes zusätzliche Bit verdoppelt die Anzahl möglicher Werte!

97

Programmieren – D. Straub Zahlensysteme

Vorzeichenbehaftete Zahlen

Problem: Wie stellt man negative Zahlen dar?

Lösung: Ein Bit wird für das Vorzeichen verwendet

Wertebereich:

Bits Vorzeichenlos Mit Vorzeichen

8 0–255 -128 bis 127
16 0–65.535 -32.768 bis 32.767
32 0–~4,3 Mrd. ~-2,1 Mrd. bis ~2,1 Mrd.

• Gleich viele darstellbare Zahlen, nur anders verteilt
• Nicht symmetrisch (z.B. -128 bis +127), weil es nur eine Null gibt

In Python: int hat unbegrenzte Größe – kein Überlauf!

SI-Präfixe vs. Binärpräfixe

Problem: Zwei verschiedene Systeme für Speichergrößen!

SI-Präfixe (Dezimal, Basis 10): - Kilo (k) = 103 = 1.000 - Mega (M) = 106 = 1.000.000 - Giga
(G) = 109 = 1.000.000.000 - Tera (T) = 1012 = 1.000.000.000.000

Binärpräfixe (IEC-Standard, Basis 2): - Kibi (Ki) = 210 = 1.024 - Mebi (Mi) = 220 = 1.048.576
- Gibi (Gi) = 230 = 1.073.741.824 - Tebi (Ti) = 240 = 1.099.511.627.776

Unterschied SI vs. Binär: Praktische Auswirkung

Beispiel: 1 TB Festplatte

Hersteller rechnet (SI):
si_bytes = 1_000_000_000_000 # 1 TB = 1.000 GB

Betriebssystem rechnet (Binär):
gibibytes = si_bytes / (1024**3)
print(f"1 TB = {gibibytes:.2f} GiB") # ~931 GiB

Deshalb: Eine “1 TB” Festplatte zeigt im Betriebssystem nur ~931 GB an!

98

Programmieren – D. Straub Zahlensysteme

Aktueller Standard:

• Festplatten-Hersteller: SI-Präfixe (Dezimal)
• Betriebssysteme: oft noch Binär, zeigen aber “GB” an
• IEC-Standard: KiB, MiB, GiB für Binärpräfixe (wird immer mehr verwendet)

Verwendung von Byte-Präfixen in Dateimanagern

Betriebssystem Einheit Basis Kommentar

Windows KB, MB, GB 1024 Binärpräfixe aber
ohne “i” �

macOS KB, MB, GB 1000 SI-Präfixe aber mit
K für Kilo �

Linux/KDE KiB, MiB, GiB 1024 IEC-Präfixe
(korrekt) �,
einstellbar

Linux/Gnome KB, MB, GB 1000 SI-Präfixe, aber
mit K für Kilo �

Umrechnung: Beispiele

Wie viele Bytes sind 5 MiB?
mib = 5
bytes_wert = mib * 1024 * 1024
print(f"{mib} MiB = {bytes_wert:,} Bytes")
print(f"{mib} MiB = {bytes_wert / 1_000_000:.2f} MB (SI)")

RAM-Größen sind typischerweise in Zweierpotenzen
ram_gb = 16 # "16 GB" RAM
ram_bytes = 16 * 1024**3 # Eigentlich GiB!
print(f"{ram_gb} GiB = {ram_bytes:,} Bytes")
print(f"{ram_gb} GiB = {ram_bytes / 1_000_000_000:.2f} GB (SI)")

Stellenwertsysteme: Grundidee

Ein Stellenwertsystem repräsentiert Zahlen durch Ziffern an verschiedenen Positionen.

99

Programmieren – D. Straub Zahlensysteme

Allgemeine Form:

Zahl = 𝑑𝑛 ⋅ 𝑏𝑛 + 𝑑𝑛−1 ⋅ 𝑏𝑛−1 + … + 𝑑1 ⋅ 𝑏1 + 𝑑0 ⋅ 𝑏0

• 𝑏 = Basis des Zahlensystems
• 𝑑𝑖 = Ziffer an Position 𝑖 (von rechts, beginnend bei 0)
• Jede Position hat einen Stellenwert: 𝑏𝑖

Wichtig: Die Ziffer 𝑑𝑖 muss kleiner als die Basis sein: 0 ≤ 𝑑𝑖 < 𝑏

Dezimalsystem (Basis 10)

Unser Alltags-Zahlensystem

• Basis: 𝑏 = 10
• Ziffern: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Beispiel: 5347

Position 3 2 1 0

Stellenwert 103 102 101 100

1000 100 10 1
Ziffer 5 3 4 7
Wert 5000 300 40 7

534710 = 5 ⋅ 103 + 3 ⋅ 102 + 4 ⋅ 101 + 7 ⋅ 100

Binärsystem (Basis 2)

Die Sprache der Computer

• Basis: 𝑏 = 2
• Ziffern: 0, 1

Beispiel: 1011

Position 3 2 1 0

Stellenwert 23 22 21 20

100

Programmieren – D. Straub Zahlensysteme

Position 3 2 1 0

8 4 2 1
Ziffer 1 0 1 1
Wert 8 0 2 1

10112 = 1 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20 = 1110

Hexadezimalsystem (Basis 16)

Kompakte Darstellung für Binärzahlen

• Basis: 𝑏 = 16
• Ziffern: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
• A=10, B=11, C=12, D=13, E=14, F=15

Beispiel: 2F3

Position 2 1 0

Stellenwert 162 161 160

256 16 1
Ziffer 2 F (15) 3
Wert 512 240 3

2F316 = 2 ⋅ 162 + 15 ⋅ 161 + 3 ⋅ 160 = 75510

Warum Hexadezimal?

4 Bit = 1 Hexadezimal-Ziffer – sehr praktisch!

Binär Hex Dezimal Binär Hex Dezimal

0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11

101

Programmieren – D. Straub Zahlensysteme

Binär Hex Dezimal Binär Hex Dezimal

0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

Beispiel: 11010110 (binär) = D6 (hex) – viel kompakter! ### Zahlensysteme in Python

Python unterstützt verschiedene Zahlensysteme direkt:

Dezimal (Standard)
dezimal = 42
print(dezimal)

Binär (Präfix 0b)
binaer = 0b101010
print(binaer) # Ausgabe in Dezimal: 42
print(bin(dezimal)) # Umwandlung zu Binär-String: '0b101010'

Hexadezimal (Präfix 0x)
hexadezimal = 0x2A
print(hexadezimal) # Ausgabe in Dezimal: 42
print(hex(dezimal)) # Umwandlung zu Hex-String: '0x2a'

Umrechnung in Python: Binär/Hex → Dezimal

Mit int()-Funktion und Basis-Parameter:

Binär → Dezimal
binaer_string = "101010"
dezimal = int(binaer_string, 2)
print(dezimal) # 42

Hexadezimal → Dezimal
hex_string = "2A"
dezimal = int(hex_string, 16)
print(dezimal) # 42

102

Programmieren – D. Straub Zahlensysteme

Auch mit Präfixen möglich
print(int("0b101010", 2)) # 42
print(int("0x2A", 16)) # 42

Umrechnung: Beliebige Basis → Dezimal

Methode: Stellenwertsystem-Formel anwenden

Algorithmus: 1. Von rechts nach links durchgehen 2. Jede Ziffer mit ihrem Stellenwert
multiplizieren 3. Alle Werte addieren

Beispiel: 2F316 → Dezimal

2 × 162 + 15 × 161 + 3 × 160 = 512 + 240 + 3 = 755

Umrechnung: Dezimal → Beliebige Basis

Methode: Wiederholte Division mit Rest

Beispiel: 42 → Binär

• 42 ÷ 2 = 21 Rest 0
• 21 ÷ 2 = 10 Rest 1
• 10 ÷ 2 = 5 Rest 0
• 5 ÷ 2 = 2 Rest 1
• 2 ÷ 2 = 1 Rest 0
• 1 ÷ 2 = 0 Rest 1

Ergebnis (von unten nach oben): 1010102

Umrechnung: Dezimal → Hexadezimal

Methode: Wiederholte Division mit Rest (wie bei Binär)

Beispiel: 755 → Hexadezimal

• 755 ÷ 16 = 47 Rest 3 → Ziffer: 3
• 47 ÷ 16 = 2 Rest 15 → Ziffer: F (15 = F)
• 2 ÷ 16 = 0 Rest 2 → Ziffer: 2

103

Programmieren – D. Straub Zahlensysteme

Ergebnis (von unten nach oben): 2F316

Probe: 2 × 162 + 15 × 161 + 3 × 160 = 512 + 240 + 3 = 755 �

� Gruppenarbeit: CSS-Farbcode entschlüsseln

Gegeben: Hex-Farbcode #FC5555

Aufgaben: 1. Wandle jede Hex-Ziffer einzeln in Dezimal um 2. Bestimme die RGB-Werte (Rot,
Grün, Blau) 3. Jeder Farbkanal hat einen Wert von 0–255 (additive Farbmischung)

Hinweis: CSS-Farbcodes: #RRGGBB - Erste 2 Ziffern = Rot - Mittlere 2 Ziffern = Grün - Letzte 2
Ziffern = Blau

Frage: Welche Farbe ergibt sich?

Zusatzaufgabe: #007CB0

Umrechnung: Binär↔ Hexadezimal

Besonders einfach: 4 Binärziffern = 1 Hexadezimalziffer!

Binär → Hex: Gruppiere je 4 Bits von rechts

Beispiel: 110101102 → Hex - 1101 = 1310 = D - 0110 = 610 = 6 - Ergebnis: D6

Hex → Binär: Jede Ziffer = 4 Bits

Beispiel: 2FA → Binär - 2 = 0010, F = 1111, A = 1010 - Ergebnis: 1011111010

Alle 6 Umrechnungsfälle: Übersicht

Von → Nach Methode Python-Funktion

Dezimal → Binär Division mit Rest bin(x)
Dezimal → Hex Division mit Rest hex(x)
Binär → Dezimal Stellenwertsystem int(x, 2)
Binär → Hex Über Dezimal oder

4-Bit-Gruppen
hex(int(x, 2))

Hex → Dezimal Stellenwertsystem int(x, 16)

104

Programmieren – D. Straub Zahlensysteme

Von → Nach Methode Python-Funktion

Hex → Binär Über Dezimal oder
jede Ziffer → 4 Bits

bin(int(x, 16))

Zwei Strategien: 1. Direkte Umrechnung: Binär � Hex (4-Bit-Gruppen) 2. Über Dezimal:
Alle anderen Fälle

Gleitkommazahlen: Problem der Darstellung

Wie speichert der Computer Dezimalzahlen?

Problem:

• Ganzzahlen: exakte Darstellung möglich
• Dezimalzahlen: unendlich viele mögliche Werte zwischen zwei Ganzzahlen!
• Speicher ist begrenzt (32 oder 64 Bit)

Lösung: Gleitkommazahlen (Floating Point) - Idee: Wissenschaftliche Notation im Binärsystem -
Speichere Vorzeichen, signifikante Stellen und Exponent - Ermöglicht sehr große und sehr kleine
Zahlen mit begrenztem Speicher

Binärkommazahlen

Dezimalzahlen mit Nachkommastellen in Binär

Wie bei Ganzzahlen: Stellenwertsystem, aber mit negativen Exponenten!

Position 20 2−1 2−2 2−3 2−4

Wert 1 0,5 0,25 0,125 0,0625

Beispiel: 0.112 in Dezimal

0.112 = 1 × 2−1 + 1 × 2−2 = 0.5 + 0.25 = 0.7510

Beispiel: 1.1012 in Dezimal

1.1012 = 1 × 20 + 1 × 2−1 + 0 × 2−2 + 1 × 2−3

105

Programmieren – D. Straub Zahlensysteme

= 1 + 0.5 + 0.125 = 1.62510

Umrechnung: Dezimalzahlen in Binär

Methode: Multiplikation mit Basis (statt Division)

Beispiel: 0.7510 in Binär

• 0.75 × 2 = 1.5 → Ziffer: 1, Rest: 0.5
• 0.5 × 2 = 1.0 → Ziffer: 1, Rest: 0.0
• Ergebnis: 0.7510 = 0.112

Probe: 0.112 = 1 × 2−1 + 1 × 2−2 = 0.75 �

Problem: Nicht alle Dezimalzahlen haben endliche Binärdarstellung! - 0.110 = 0.000112
(periodisch – unendlich viele Nachkommastellen!)

Beispiel: 0.1 im Binärsystem

Umrechnung 0.110 → Binär (Multiplikationsmethode):

• 0.1 × 2 = 0.2 → Ganzzahlteil: 0, Rest: 0.2
• 0.2 × 2 = 0.4 → Ganzzahlteil: 0, Rest: 0.4
• 0.4 × 2 = 0.8 → Ganzzahlteil: 0, Rest: 0.8
• 0.8 × 2 = 1.6 → Ganzzahlteil: 1, Rest: 0.6
• 0.6 × 2 = 1.2 → Ganzzahlteil: 1, Rest: 0.2
• 0.2 × 2 = 0.4 → Wiederholt sich! �

Ergebnis (von oben nach unten): 0.110 = 0.000112 (periodisch)

Probe zurück in Dezimal (erste Stellen):

0.00011001100110011...2 = 0 ⋅ 2−1 + 0 ⋅ 2−2 + 0 ⋅ 2−3 + 1 ⋅ 2−4 + 1 ⋅ 2−5 + ...

= 0.0625 + 0.03125 + 0.0078125 + ... ≈ 0.09999999...

Gleitkommazahlen: IEEE-754-Standard

Wie speichert der Computer Binärkommazahlen?

64-Bit Double Precision (Python float):

106

Programmieren – D. Straub Zahlensysteme

Vorzeichen Exponent Mantisse

1 Bit 11 Bits 52 Bits

Format: ±1.Mantisse × 2Exponent (normalisierte Form)

Beispiel: 0.75

• Dezimal: 0.7510
• Binär: 0.112 = 1.12 × 2−1 (normalisiert)
• Vorzeichen: 0 (positiv)
• Exponent: -1
• Mantisse: 1 (führende 1. ist implizit, nur .1 wird gespeichert)

Gleitkommazahlen: Grenzen der Genauigkeit

52-Bit-Mantisse � 15–17 Dezimalstellen Genauigkeit

Erinnerung: Rundungsfehler!
print(0.1 + 0.1 + 0.1) # 0.30000000000000004
print(0.1 + 0.1 + 0.1 == 0.3) # False

Warum?

• 0.110 hat unendlich viele Nachkommastellen im Binärsystem!
• 0.110 = 0.000112 (periodisch)
• Wird nach 52 Bit abgeschnitten → Rundungsfehler

Fazit: Niemals Gleitkommazahlen mit == vergleichen!

Gleitkommazahlen: Spezielle Werte

IEEE 754 definiert spezielle Werte:

Unendlich (Division durch 0)
print(1.0 / 0.0) # inf
print(-1.0 / 0.0) # -inf

Not a Number (ungültige Operationen)
print(0.0 / 0.0) # nan

107

Programmieren – D. Straub Zahlensysteme

print(float('inf') - float('inf')) # nan

Testen
import math
x = float('inf')
print(math.isinf(x)) # True
y = float('nan')
print(math.isnan(y)) # True

Gleitkommazahlen: Extreme Werte

Wertebereich von float (64-Bit):

• Größte Zahl: ca. 1.8 × 10308

• Kleinste positive Zahl: ca. 2.2 × 10−308

• Präzision: ca. 15–17 Dezimalstellen

Überlauf/Unterlauf:

print(1e308) # 1e+308
print(1e309) # inf (Überlauf!)
print(1e-324) # 5e-324
print(1e-325) # 0.0 (Unterlauf!)

Gleitkommazahlen: Best Practices

� Vermeiden:

Direkte Gleichheitstests
if x == 0.3: # Gefährlich!

...

Akkumulation kleiner Fehler
summe = 0.0
for i in range(1000000):

summe += 0.1 # Fehler akkumulieren sich!

108

Programmieren – D. Straub Zahlensysteme

Gleitkommazahlen: Best Practices

� Besser:

Toleranz-basierter Vergleich
tolerance = 1e-9
if abs(x - 0.3) < tolerance:

...

Für kritische Anwendungen: decimal-Modul
from decimal import Decimal
summe = Decimal('0.0')
for i in range(1000000):

summe += Decimal('0.1') # Exakt!

Übungsaufgaben: Zahlensysteme

Dateiberechtigungen (Unix/Linux) Die Oktalzahl 755 steht für Dateiberechtigungen:
rwxr-xr-x - Wandle 755 (Oktal) in Binär um - Was bedeuten die 9 Bits? (3 Bit pro
Benutzergruppe: owner, group, others)

UTF-8 Emoji Das Emoji � hat den Unicode U+1F525 (Hexadezimal) - Wandle 1F525 in Dezimal
um - Wie viele Werte kann Unicode maximal darstellen? (Hinweis: 10FFFF ist der höchste Wert)

109

Programmieren – D. Straub Klassen

Klassen

Motivation: Warum Klassen?

Bisher: Variablen und Funktionen getrennt

signal_amplitude = 5.0
signal_frequenz = 50.0 # Hz
signal_phase = 0.0

def berechne_effektivwert(amplitude):
return amplitude / (2**0.5)

print(f"Effektivwert: {berechne_effektivwert(signal_amplitude):.2f}")

Problem: Zusammengehörige Daten (Amplitude, Frequenz, Phase) und Funktionen sind
getrennt – unübersichtlich bei vielen Signalen!

Was sind Klassen?

Klassen bündeln zusammengehörige Daten und Funktionen

• Eine Klasse ist eine benutzerdefinierte Datenstruktur mit zugehörigen Operationen
• Eine Instanz ist ein konkretes Objekt dieser Klasse
• Attribute sind die Daten (Variablen) einer Instanz
• Methoden sind die Funktionen, die auf Instanzen operieren

Beispiel Signal:

• Klasse Signal: Definiert, was ein Signal ist und kann
• Instanz: Ein konkretes Signal mit Amplitude 5V, Frequenz 50Hz
• Attribute: amplitude, frequenz, phase
• Methoden: effektivwert(), abtasten()

Klassen haben wir bereits verwendet!

Alle Datentypen in Python sind Klassen:

110

Programmieren – D. Straub Klassen

zahl = 42
text = "Hallo"
liste = [1, 2, 3]

print(type(zahl)) # <class 'int'>
print(type(text)) # <class 'str'>
print(type(liste)) # <class 'list'>

Methoden haben wir schon benutzt:

text.upper() # Methode der str-Klasse
liste.append(4) # Methode der list-Klasse

Jetzt lernen wir: Eigene Klassen definieren!

Wichtig: Klasse vs. Instanz

Wiederholung: Definition vs. Aufruf bei Funktionen

Definition: Legt fest, WAS die Funktion tut
def gruss(name):

return f"Hallo {name}"

Aufruf: BENUTZT die Funktion
nachricht = gruss("Anna")

Genauso bei Klassen:

• Klassendefinition: Legt fest, WAS ein Objekt können soll
• Instanzerstellung: ERSTELLT ein konkretes Objekt
• Methodenaufruf : BENUTZT die Methode eines Objekts

Erste eigene Klasse: Signal

class Signal:
pass # Leere Klasse (fürs Erste)

Instanz erstellen (= ein konkretes Signal-Objekt erzeugen)
signal1 = Signal()

111

Programmieren – D. Straub Klassen

print(signal1)
print(type(signal1)) # <class '__main__.Signal'>

Wichtig:

• class Signal: = Definition (wie def bei Funktionen)
• Signal() = Aufruf, erstellt eine Instanz
• signal1 = Variable, die auf die Instanz zeigt

Attribute hinzufügen

class Signal:
pass

Instanz erstellen
signal1 = Signal()

Attribute zuweisen
signal1.amplitude = 5.0
signal1.frequenz = 50.0
signal1.phase = 0.0

print(f"Amplitude: {signal1.amplitude} V")
print(f"Frequenz: {signal1.frequenz} Hz")

Syntax: objekt.attribut = wert

� Achtung: Attribute sollten eigentlich im Konstruktor definiert werden (dazu gleich mehr)!

Mehrere Instanzen

class Signal:
pass

Zwei verschiedene Signale
signal1 = Signal()
signal1.amplitude = 5.0

112

Programmieren – D. Straub Klassen

signal1.frequenz = 50.0

signal2 = Signal()
signal2.amplitude = 3.3
signal2.frequenz = 1000.0

print(signal1.frequenz) # 50.0
print(signal2.frequenz) # 1000.0

Jede Instanz hat eigene Attribute!

Der Konstruktor: __init__

Problem: Attribute manuell setzen ist umständlich und fehleranfällig

Lösung: Der Konstruktor initialisiert Attribute beim Erstellen

class Signal:
def __init__(self, amplitude, frequenz, phase=0.0):

self.amplitude = amplitude
self.frequenz = frequenz
self.phase = phase

Jetzt einfacher und sicherer:
signal1 = Signal(5.0, 50.0)
signal2 = Signal(3.3, 1000.0, 1.57)

print(signal1.amplitude) # 5.0
print(signal2.frequenz) # 1000.0

Was ist self?

self ist eine Referenz auf die Instanz selbst

class Signal:
def __init__(self, amplitude, frequenz):

self.amplitude = amplitude
self.frequenz = frequenz

113

Programmieren – D. Straub Klassen

signal1 = Signal(5.0, 50.0)

Was passiert intern: 1. Python erstellt ein leeres Objekt 2. Python ruft __init__(signal1,
5.0, 50.0) auf 3. self zeigt auf signal1 4. self.amplitude = amplitude →
signal1.amplitude = 5.0

Merke: self ist wie “ich selbst” – das Objekt referenziert sich selbst!

Methoden: Funktionen in Klassen

import math

class Signal:
def __init__(self, amplitude, frequenz, phase=0.0):

self.amplitude = amplitude
self.frequenz = frequenz
self.phase = phase

def effektivwert(self):
return self.amplitude / math.sqrt(2)

signal1 = Signal(5.0, 50.0)
print(f"Effektivwert: {signal1.effektivwert():.2f} V")

Syntax: objekt.methode() – self wird automatisch übergeben!

Methoden mit Parametern

import math

class Signal:
def __init__(self, amplitude, frequenz, phase=0.0):

self.amplitude = amplitude
self.frequenz = frequenz
self.phase = phase

114

Programmieren – D. Straub Klassen

def abtastwert(self, zeit):
"""Berechnet den Signalwert zu einem Zeitpunkt"""
omega = 2 * math.pi * self.frequenz
return self.amplitude * math.sin(omega * zeit + self.phase)

signal1 = Signal(5.0, 50.0)
print(f"Wert bei t=0: {signal1.abtastwert(0):.2f} V")
print(f"Wert bei t=0.005: {signal1.abtastwert(0.005):.2f} V")
print(f"Wert bei t=0.01: {signal1.abtastwert(0.01):.2f} V")

Methoden können Attribute ändern

import math

class Signal:
def __init__(self, amplitude, frequenz, phase=0.0):

self.amplitude = amplitude
self.frequenz = frequenz
self.phase = phase

def phasenverschiebung(self, delta_phase):
"""Verschiebt die Phase des Signals"""
self.phase += delta_phase

def verstaerken(self, faktor):
"""Verstärkt oder dämpft das Signal"""
self.amplitude *= faktor

signal1 = Signal(5.0, 50.0)
print(f"Amplitude: {signal1.amplitude} V")
signal1.verstaerken(2.0)
print(f"Nach Verstärkung: {signal1.amplitude} V")

115

Programmieren – D. Straub Klassen

String-Darstellung: __str__

class Signal:
def __init__(self, amplitude, frequenz, phase=0.0):

self.amplitude = amplitude
self.frequenz = frequenz
self.phase = phase

def __str__(self):
return f"Signal({self.amplitude}V, {self.frequenz}Hz, φ={self.phase:.2f})"

signal1 = Signal(5.0, 50.0, 0.5)
print(signal1) # Nutzt automatisch __str__

__str__ wird automatisch aufgerufen, wenn das Objekt mit print() ausgegeben wird!

Beispiel: Messung

class Messung:
def __init__(self, wert, einheit):

self.wert = wert
self.einheit = einheit

def in_millivolt(self):
if self.einheit == "V":

return self.wert * 1000
return self.wert

def __str__(self):
return f"{self.wert} {self.einheit}"

m = Messung(3.3, "V")
print(m)
print(f"In mV: {m.in_millivolt()} mV")

116

Programmieren – D. Straub Klassen

Klassenattribute vs. Instanzattribute

class Sensor:
Klassenattribut (für alle Instanzen gleich)
max_abtastrate = 1000 # Hz

def __init__(self, id, kalibrierungsfaktor):
Instanzattribute (für jede Instanz verschieden)
self.id = id
self.kalibrierungsfaktor = kalibrierungsfaktor
self.messwerte = []

sensor1 = Sensor("S001", 1.05)
sensor2 = Sensor("S002", 0.98)

print(sensor1.id) # S001 (verschieden)
print(sensor2.id) # S002 (verschieden)
print(sensor1.max_abtastrate) # 1000 (gleich)
print(sensor2.max_abtastrate) # 1000 (gleich)

Klassenattribute sind für alle Instanzen gleich!

Wann verwendet man Klassen?

� Sinnvoll:

• Zusammengehörige Daten mit Verhalten/Methoden
• Mehrere ähnliche Objekte benötigt
• Zustand muss über mehrere Operationen erhalten bleiben
• Strukturierte Datencontainer (statt Tupel/Dictionaries)

� Weniger sinnvoll:

• Einfache Berechnungen ohne Zustand → einfache Funktionen
• Zustandslose Funktionen → Funktionen oder Modul
• Einmalige Datensammlung → Dictionary oder Tupel

117

Programmieren – D. Straub Klassen

Zusammenfassung: Klassen

Grundkonzepte:

• Klasse = Benutzerdefinierter Datentyp (class)
• Instanz = Konkretes Objekt (Klassenname())
• Attribute = Daten (self.attribut)
• Methoden = Funktionen (def methode(self, ...))

Wichtige Methoden:

• __init__(self, ...) – Konstruktor
• __str__(self) – String-Darstellung

Übungsaufgabe: Widerstand

Erstelle eine Klasse Widerstand:

• Konstruktor: Widerstandswert in Ohm
• parallel(self, r2): Ersatzwiderstand Parallelschaltung (𝑅𝑔𝑒𝑠 = 1

1
𝑅1 + 1

𝑅2
)

• reihe(self, r2): Ersatzwiderstand Reihenschaltung (𝑅𝑔𝑒𝑠 = 𝑅1 + 𝑅2)
• leistung(self, spannung): Leistung (𝑃 = 𝑈2

𝑅)
• __str__(): z.B. “100 Ω”

r1 = Widerstand(100)
print(r1.parallel(200)) # 66.67
print(r1.leistung(5)) # 0.25

Übungsaufgabe: Timer

Erstelle eine Klasse Timer:

• Konstruktor: Initialisiert startzeit und laufend (None bzw. False)
• start(): Startet Timer (speichert time.time())
• stop(): Stoppt Timer
• vergangene_zeit(): Gibt Zeit in Sekunden zurück
• __str__(): Status (“läuft” oder “gestoppt: X.XX s”)

t = Timer()
t.start()

118

Programmieren – D. Straub Klassen

... Code ausführen ...
t.stop()
print(t.vergangene_zeit()) # z.B. 2.34

119

Programmieren – D. Straub Numerisches Programmieren mit NumPy

Numerisches Programmieren mit NumPy

Was ist NumPy?

NumPy = Numerical Python

Die wichtigste Bibliothek für numerisches Rechnen in Python.

Unverzichtbar für Ingenieurwesen: - Signalverarbeitung, Simulation, Datenanalyse - Basis für
SciPy, pandas, Matplotlib - Viel schneller als Python-Listen

Arrays vs. Listen

Listen:

• Flexibel: verschiedene Datentypen möglich
• Langsam für numerische Berechnungen

NumPy-Arrays:

• Nur ein Datentyp (z.B. nur Zahlen)
• In C implementiert → sehr schnell
• Natürliche Syntax für mathematische Operationen

import numpy as np

array = np.array([1, 2, 3, 4, 5])
print(array.dtype) # int64 - fester Datentyp

Arrays erstellen

import numpy as np

Aus Liste
a = np.array([1, 2, 3, 4, 5])
print(a)

Nullen, Einsen
nullen = np.zeros(5)

120

Programmieren – D. Straub Numerisches Programmieren mit NumPy

einsen = np.ones(3)

Bereich (wie range)
bereich = np.arange(0, 10, 2) # [0 2 4 6 8]

linspace: Wichtig für Plots!

Ohne NumPy:

x = [2 + i * (9-2)/99 for i in range(100)] # umständlich!

Mit NumPy:

import numpy as np
x = np.linspace(2, 9, 100) # elegant!

linspace(start, stop, anzahl) - gleichmäßig verteilte Werte

Element-weise Operationen

import numpy as np

a = np.array([1, 2, 3, 4, 5])

print(a + 10) # [11 12 13 14 15]
print(a * 2) # [2 4 6 8 10]
print(a ** 2) # [1 4 9 16 25]

Operationen werden auf jedes Element angewendet!

Arrays kombinieren

import numpy as np

a = np.array([1, 2, 3])
b = np.array([10, 20, 30])

print(a + b) # [11 22 33]

121

Programmieren – D. Straub Numerisches Programmieren mit NumPy

print(a * b) # [10 40 90]

Mit Listen geht das nicht!

liste_a = [1, 2, 3]
liste_b = [10, 20, 30]
print(liste_a + liste_b) # [1, 2, 3, 10, 20, 30] �

Mathematische Funktionen

import numpy as np

x = np.linspace(0, 2*np.pi, 5)

print(np.sin(x))
print(np.cos(x))
print(np.exp(x))

Funktionen arbeiten element-weise auf Arrays!

Plots mit NumPy

import numpy as np
import matplotlib.pyplot as plt

x-Werte generieren
x = np.linspace(0, 2*np.pi, 100)

Funktion berechnen
y = np.sin(x)

plt.plot(x, y)
plt.grid(True)
plt.show()

Viel kürzer und lesbarer als mit List Comprehensions!

122

Programmieren – D. Straub Numerisches Programmieren mit NumPy

Statistik

import numpy as np

messwerte = np.array([23.1, 24.5, 23.8, 24.2, 23.9])

print(f"Mittelwert: {np.mean(messwerte):.2f}")
print(f"Standardabweichung: {np.std(messwerte):.2f}")
print(f"Minimum: {np.min(messwerte):.2f}")
print(f"Maximum: {np.max(messwerte):.2f}")

2D-Arrays: Vektoren & Matrizen

import numpy as np

3D-Vektor
vektor = np.array([1.0, 2.0, 3.0])

Matrix (3x3)
matrix = np.array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]])

print(vektor.shape) # (3,)
print(matrix.shape) # (3, 3)

Vektoroperationen

import numpy as np

v1 = np.array([1, 2, 3])
v2 = np.array([4, 5, 6])

Skalarprodukt
print(np.dot(v1, v2)) # 32

123

Programmieren – D. Straub Numerisches Programmieren mit NumPy

Kreuzprodukt
print(np.cross(v1, v2)) # [-3 6 -3]

Betrag
print(np.linalg.norm(v1)) # 3.74

Ohne NumPy extrem umständlich!

Matrixmultiplikation mit @

import numpy as np

A = np.array([[1, 2],
[3, 4]])

B = np.array([[5, 6],
[7, 8]])

Matrixmultiplikation mit @
C = A @ B
print(C) # [[19 22]

[43 50]]

Achtung: A * B ist element-weise Multiplikation, nicht Matrixmultiplikation!

NumPy vs. for-Schleife: Geschwindigkeit

import numpy as np
import time

Mit for-Schleife
start = time.time()
x = [i/100 for i in range(100000)]
y = [xi**2 + 2*xi + 1 for xi in x]
print(f"For-Schleife: {time.time()-start:.3f}s")

Mit NumPy

124

Programmieren – D. Straub Numerisches Programmieren mit NumPy

start = time.time()
x = np.linspace(0, 1000, 100000)
y = x**2 + 2*x + 1
print(f"NumPy: {time.time()-start:.3f}s")

Relevant bei: CFD-Simulationen, FEM-Berechnungen, Sensordaten, neuronalen Netzen, …

NumPy Matrix-Multiplikation vs. for-Schleife: Geschwindigkeit

import numpy as np
import time

n = 500 # 500x500 Matrizen

A = [[i+j for j in range(n)] for i in range(n)]
B = [[i-j for j in range(n)] for i in range(n)]

start = time.time()
C = [[sum(A[i][k]*B[k][j] for k in range(n)) for j in range(n)] for i in range(n)]
zeit_for = time.time() - start
print(f"For-Schleife: {zeit_for:.2f}s")

A = np.arange(n*n).reshape(n, n)
B = np.arange(n*n).reshape(n, n)

start = time.time()
C = A @ B
zeit_numpy = time.time() - start
print(f"NumPy: {zeit_numpy:.2f}s")
print(f"Speedup: {zeit_for/zeit_numpy:.0f}x schneller")

Zusammenfassung: NumPy

Wichtigste Funktionen:

• np.array() - Array erstellen

125

Programmieren – D. Straub Numerisches Programmieren mit NumPy

• np.linspace(start, stop, num) - Werte für Plots
• np.sin(), np.cos(), np.exp() - Math. Funktionen
• np.dot(), np.cross() - Vektoroperationen

Warum NumPy?

• Kompakter, lesbarer Code
• 10-100x schneller als Listen
• Standard im Ingenieurwesen

Ausblick: SciPy

SciPy baut auf NumPy auf und bietet wissenschaftliche Funktionen:

• Integration: scipy.integrate.quad() - numerische Integration
• Optimierung: scipy.optimize.minimize() - Funktionen minimieren
• Signalverarbeitung: scipy.signal - Filter, FFT, Faltung
• Differentialgleichungen: scipy.integrate.odeint() - DGL lösen
• Statistik: scipy.stats - Verteilungen, Tests

from scipy.integrate import quad

def f(x):
return x**2

ergebnis, fehler = quad(f, 0, 1) # Integral von 0 bis 1
print(f"Integral: {ergebnis:.4f}") # 0.3333

Beispielaufgabe: Kräftegleichgewicht

Drei Kräfte wirken auf einen Punkt:

⃗𝐹1 =
⎛⎜⎜⎜
⎝

3
4
0

⎞⎟⎟⎟
⎠

, ⃗𝐹2 =
⎛⎜⎜⎜
⎝

−2
1
5

⎞⎟⎟⎟
⎠

, ⃗𝐹3 =
⎛⎜⎜⎜
⎝

𝑥
𝑦
𝑧

⎞⎟⎟⎟
⎠

Aufgaben: 1. Berechne die resultierende Kraft ⃗𝐹𝑟𝑒𝑠 = ⃗𝐹1 + ⃗𝐹2 2. Bestimme ⃗𝐹3, sodass
Gleichgewicht herrscht (⃗𝐹𝑟𝑒𝑠 + ⃗𝐹3 = ⃗0) 3. Berechne die Beträge aller Kräfte mit

126

Programmieren – D. Straub Numerisches Programmieren mit NumPy

np.linalg.norm() 4. Berechne den Winkel zwischen ⃗𝐹1 und ⃗𝐹2 mit:

cos(𝛼) =
⃗𝐹1 ⋅ ⃗𝐹2

| ⃗𝐹1| ⋅ | ⃗𝐹2|

Beispielaufgabe: Stromberechnung

Gegeben ist ein elektrisches Netzwerk mit drei Maschen. Die Maschengleichungen (Kirchhoff)
ergeben:

5𝐼1 − 2𝐼2 + 0𝐼3 = 10 (1)

−2𝐼1 + 8𝐼2 − 3𝐼3 = 5 (2)

0𝐼1 − 3𝐼2 + 6𝐼3 = 0 (3)

Aufgaben: 1. Erstelle die Koeffizientenmatrix 𝐴 und den Vektor 𝑏 2. Löse das Gleichungssystem
mit np.linalg.solve(A, b) 3. Berechne die Gesamtleistung: 𝑃 = ∑3

𝑖=1 𝐼2
𝑖 ⋅ 𝑅𝑖 mit 𝑅 = [5, 8, 6]

Ω

127

	Gliederung
	Einführung
	Warum Python? Einfachheit
	Einfachheit: Liste der Quadrate der Zahlen von 0 bis 9
	Beliebtheit
	Warum Beliebtheit wichtig ist
	Mythen über Python
	Zusammenfassung: Warum Python?
	Python installieren
	Versionsgeschichte
	Konsole, Skript, Notebook
	Python ausprobieren, ohne es zu installieren
	One-Minute-Paper

	Grundlagen
	Variablen
	Variablennamen: Fallstricke
	Namen: Konventionen
	Ganze Zahlen (int)
	Division & Integers
	Wahrheitswerte (bool)
	Vergleichsoperatoren
	Truthiness: Was ist wahr?
	Vergleichsoperatoren: Chaining
	Logische Operatoren
	Kurzschlussauswertung
	Gleitkommazahlen (float)
	Vergleich von Gleitkommazahlen
	Extreme Werte
	Strings
	Strings und Unicode: Emoji
	Escape Sequences
	String-Formatierung mit f-Strings
	f-String Formatierung
	Aufgabe: Persönlicher Datenrechner
	Kontrollstrukturen: Übersicht
	Verzweigungen
	Verzweigungen: Wichtige Konzepte
	Verzweigungen: Truthiness in der Praxis
	Komplexe Bedingungen
	Aufgabe

	Funktionen
	Kapselung von Komplexität
	Warum Funktionen?
	Funktionen: Kapselung (encapsulation) der Funktionalität
	Anatomie einer Funktion
	Erste einfache Funktion
	Funktionen mit Parametern
	Mehrere Parameter
	Rückgabewerte: return
	Mehrere Rückgabewerte
	Standardwerte für Parameter
	Lokale vs. Globale Variablen
	Funktionen mit Verzweigungen
	Kompakte Startfreigabe-Funktion
	Reine Funktionen und Nebeneffekte
	Vorteile reiner Funktionen
	Aufgabe: Mitternachtsformel

	Schleifen
	Wozu Schleifen?

	while-Schleifen
	while: Grundform
	Endlosschleife vermeiden
	while: Zählschleife (wenn Bedingungen flexibler sein sollen)
	Sentinel-Schleife (lesen bis Ende)
	Iteration bis Toleranz (Konvergenz)
	break und continue mit while
	Aufgabe: Geschwindigkeitsregelung

	for-Schleifen
	for: Wiederholungen mit range()
	range(): Integer-Folgen erzeugen
	range(start, stop) und range(start, stop, step)
	Über Strings iterieren
	Anwendung: Zeichen zählen
	break und continue in for-Schleifen
	Verschachtelte Schleifen: Multiplikationstabelle
	Aufgabe: Quersumme berechnen
	Aufgabe: Batterie-Lade-Simulation

	Einschub: Wie fange ich an? 🤔
	🤔 Funktion oder Skript?
	📋 Vorgehen: Funktion schreiben
	📋 Vorgehen: Skript schreiben

	Datenstrukturen
	Warum Datenstrukturen?
	Überblick: wichtigste Datenstrukturen in Python

	Listen
	Was sind Listen?
	Listen erstellen
	Listen aus anderen Objekten erstellen
	Auf Elemente zugreifen: Indexierung
	Slicing: Teilbereiche extrahieren
	Länge einer Liste
	Elemente hinzufügen
	Elemente entfernen
	Elemente suchen
	Listen sortieren
	Über Listen iterieren
	Aufgabe: Messdatenverarbeitung

	Tupel
	Was sind Tupel?
	Tupel erstellen
	Auf Tupel-Elemente zugreifen
	Tuple Unpacking
	Tupel sind unveränderbar
	Tupel vs. Listen: Wann was?
	Funktionen mit Tupel-Rückgabe

	Dictionaries
	Was sind Dictionaries?
	Dictionary erstellen
	Auf Werte zugreifen
	Werte hinzufügen und ändern
	Über Dictionaries iterieren
	Verschachtelte Dictionaries
	Live-Aufgabe: Wörterbuch-Statistik

	Sets
	Was sind Sets?
	Sets erstellen
	Sets: Duplikate entfernen
	Wann Sets verwenden?

	NumPy-Arrays
	Was ist NumPy?
	NumPy importieren und Arrays erstellen
	Arrays vs. Listen: Der Unterschied
	Mathematische Funktionen
	Statistische Funktionen
	Mehrdimensionale Arrays
	NumPy vs. Python-Listen: Zusammenfassung
	Zusammenfassung: Datenstrukturen
	Aufgabe: Flugdatenanalyse

	Module & Bibliotheken
	Wiederverwendung: Das Modul-Konzept
	Die Python-Standardbibliothek
	Module importieren: Grundformen
	Das math-Modul: Mathematische Funktionen
	Trigonometrische Funktionen
	Anwendung: Flugbahn berechnen
	Das random-Modul: Zufallszahlen
	Reproduzierbare Zufallszahlen
	Anwendung: Monte-Carlo-Simulation
	Module: Best Practices
	Hilfe zu Modulen bekommen
	Aufgabe: Raketenstart-Simulation
	Drittanbieter-Module: Mehr als die Standardbibliothek
	Was ist pip?
	Pakete mit pip installieren
	Eigene Module erstellen
	Eigenes Modul verwenden
	if __name__ == "__main__"
	Pakete: Mehrere Module gruppieren (Ausblick)

	Algorithmen, Pseudocode & Struktogramme
	Überblick: Algorithmen, Pseudocode & Struktogramme
	Was ist ein Algorithmus?
	Algorithmus: einfaches Beispiel

	Pseudocode
	Warum erst Pseudocode?
	Was ist Pseudocode?
	Pseudocode: Grundelemente (möglicher Stil)
	Beispiel: Maximum finden
	Von Pseudocode zu Python
	Ein weiteres Beispiel
	👥 Gruppenarbeit

	Struktogramme
	Die drei Grundstrukturen
	Grundregel: Der Kasten
	Struktur 1: Sequenz
	Struktur 2: Verzweigung (einfach)
	Struktur 2: Verzweigung (zweiseitig)
	Beispiel: Gerade/Ungerade prüfen
	Verschachtelte Verzweigungen
	Struktur 3: Wiederholung (for-Schleife)
	Struktur 3: Wiederholung (while-Schleife)
	Verschachtelte Strukturen
	Vollständiges Beispiel: Maximum finden
	👥 Gruppenarbeit
	Zusammenfassung

	Arbeiten mit Zeichenketten
	Überblick: Strings in der Praxis
	Wiederholung: Strings sind Sequenzen
	String-Indizierung: Positive und negative Indizes
	String-Iteration: Zeichen durchlaufen
	String-Slicing: Teilstrings extrahieren
	Slicing-Beispiel: String umkehren
	Wichtige String-Methoden: Übersicht
	Groß- und Kleinschreibung
	Sonderfall: ß und casefold()
	Split und Join: Text zerlegen und zusammenfügen
	Split/Join Anwendung: Wörter umkehren
	Text ersetzen
	Präfix und Suffix prüfen
	Suchen in Strings
	Zeichentyp prüfen
	Anwendung: E-Mail-Validierung (vereinfacht)
	Anwendung: Dateinamen verarbeiten
	String-Methoden verketten
	f-Strings: Formatierungsmöglichkeiten
	f-Strings: Tabellen formatieren
	Caesar-Verschlüsselung: Einführung
	Caesar-Verschlüsselung: Algorithmus
	Aufgabe: Caesar-Entschlüsselung
	Aufgabe: Brute-Force-Angriff
	Zusammenfassung: Arbeiten mit Zeichenketten
	Reverse Words: Wörter eines Satzes umkehren

	Visualisierung von Funktionen
	Was ist matplotlib?
	pyplot: Die zentrale Schnittstelle
	Mehr zu plt.show()
	Erster einfacher Plot
	Titel und Achsenbeschriftungen
	Gitter hinzufügen
	Mehrere Linien in einem Plot
	Linien-Stile
	Marker-Stile: Punkte anzeigen
	Linien und Marker kombinieren
	Farben festlegen
	Farben mit Namen
	Stil-String kompakt

	List Comprehensions
	Was sind List Comprehensions?
	Grundstruktur
	Wann List Comprehensions verwenden?
	List Comprehensions für Datenreihen
	Funktionen plotten: Vollständiges Beispiel
	Anwendung: Flugbahn darstellen
	Besondere Punkte hervorheben
	Zusatzaufgabe: Nullstellen markieren
	Zusammenfassung: matplotlib-Grundlagen

	Zahlensysteme
	Überblick: Zahlensysteme
	Bits und Bytes: Grundlagen
	Warum Bits und Bytes?
	7-Bit-ASCII
	Was kann man mit n Bits darstellen?
	Vorzeichenbehaftete Zahlen
	SI-Präfixe vs. Binärpräfixe
	Unterschied SI vs. Binär: Praktische Auswirkung
	Verwendung von Byte-Präfixen in Dateimanagern
	Umrechnung: Beispiele
	Stellenwertsysteme: Grundidee
	Dezimalsystem (Basis 10)
	Binärsystem (Basis 2)
	Hexadezimalsystem (Basis 16)
	Warum Hexadezimal?
	Umrechnung in Python: Binär/Hex → Dezimal
	Umrechnung: Beliebige Basis → Dezimal
	Umrechnung: Dezimal → Beliebige Basis
	Umrechnung: Dezimal → Hexadezimal
	👥 Gruppenarbeit: CSS-Farbcode entschlüsseln
	Umrechnung: Binär ↔ Hexadezimal
	Alle 6 Umrechnungsfälle: Übersicht
	Gleitkommazahlen: Problem der Darstellung
	Binärkommazahlen
	Umrechnung: Dezimalzahlen in Binär
	Beispiel: 0.1 im Binärsystem
	Gleitkommazahlen: IEEE-754-Standard
	Gleitkommazahlen: Grenzen der Genauigkeit
	Gleitkommazahlen: Spezielle Werte
	Gleitkommazahlen: Extreme Werte
	Gleitkommazahlen: Best Practices
	Gleitkommazahlen: Best Practices
	Übungsaufgaben: Zahlensysteme

	Klassen
	Motivation: Warum Klassen?
	Was sind Klassen?
	Klassen haben wir bereits verwendet!
	Wichtig: Klasse vs. Instanz
	Erste eigene Klasse: Signal
	Attribute hinzufügen
	Mehrere Instanzen
	Der Konstruktor: __init__
	Was ist self?
	Methoden: Funktionen in Klassen
	Methoden mit Parametern
	Methoden können Attribute ändern
	String-Darstellung: __str__
	Beispiel: Messung
	Klassenattribute vs. Instanzattribute
	Wann verwendet man Klassen?
	Zusammenfassung: Klassen
	Übungsaufgabe: Widerstand
	Übungsaufgabe: Timer

	Numerisches Programmieren mit NumPy
	Was ist NumPy?
	Arrays vs. Listen
	Arrays erstellen
	linspace: Wichtig für Plots!
	Element-weise Operationen
	Arrays kombinieren
	Mathematische Funktionen
	Plots mit NumPy
	Statistik
	2D-Arrays: Vektoren & Matrizen
	Vektoroperationen
	Matrixmultiplikation mit @
	NumPy vs. for-Schleife: Geschwindigkeit
	NumPy Matrix-Multiplikation vs. for-Schleife: Geschwindigkeit
	Zusammenfassung: NumPy
	Ausblick: SciPy
	Beispielaufgabe: Kräftegleichgewicht
	Beispielaufgabe: Stromberechnung

