Programmieren

Ingenieurinformatik Teil 1, Wintersemester 2025/26

David Straub

Programmieren — D. Straub

Gliederung

Gliederung

— = =
ORI)

© X NG wW D

Einfiihrung

Grundlagen: Variablen, Datentypen, Verzweigungen
Funktionen

Schleifen

Datenstrukturen

Module & Bibliotheken

Algorithmen, Pseudocode & Struktogramme
Arbeiten mit Zeichenketten

Visualisierung von Funktionen

Zahlensysteme

. Klassen

. Numerisches Programmieren mit NumPy

Programmieren — D. Straub

Einfiihrung

Einfiilhrung

1 Warmrn-Programmieren?
2. Organisatorisches

3. Warum Python?

4. Python installieren

Warum Python? Einfachheit

Python:

print("Hallo welt!")

Java:

public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hallo Welt!");

Einfachheit: Liste der Quadrate der Zahlen von 0 bis 9

Python:

quadrate = [x**2 for x in range(10)]

Fortran:

program quadrate

implicit none

integer :: i
integer, dimension(10) :: quadrate
doi=20, 09

quadrate(i+l) = i®*2
end do

end program quadrate

Programmieren — D. Straub Einfiihrung

Beliebtheit

TIOBE Programming Community Index

Quelle: TIOBE

Warum Beliebtheit wichtig ist

Mehr Bibliotheken
e Mehr Dokumentation
e Mehr Jobs

o Bessere KI-Unterstiitzung

Mythen iiber Python
Frither verbreitete Mythen iiber Python:

o Nur fiir Skripting
e Nur fiir Anféinger

e Langsam
Heute:

o Industriestandard fir ML/AI
e Standard fiir wissenschaftliches Rechnen

o Weit verbreitet in Webentwicklung, Automatisierung, uvm.

Zusammenfassung: Warum Python?

e Sehr einfach

Extrem beliebt

o Weit verbreitet in Industrie und Wissenschaft

Quelloffen & kostenlos

https://www.tiobe.com/tiobe-index/

Programmieren — D. Straub

Einfiihrung

@ python’

Python installieren

e Anders als z.B. C++ ist Python eine interpretierte Programmiersprache, d.h. der Code wird

zur Laufzeit Zeile fiir Zeile ausgefiihrt.

e Das ausfiihrende Programm heift Interpreter und ist fiir alle géngigen Betriebssysteme

verfigbar.

Anleitung:

o Windows: https://www.python.org/downloads/windows/ — herunterladen & installieren

— oder einfach WSL

e Ubuntu: sudo apt install python3 python3-pip

e MacOS: brew install python

Bitte kein Anaconda ...

Versionsgeschichte

Version

Veroffentlichung EOL

3.9

3.10
3.11
3.12
3.13
3.14

2020-10
2021-10
2022-10
2023-10
2024-10
2025-10

2025-10
2026-10
2027-10
2028-10
2029-10
2030-10

e Details: Status of Python Versions
o Diese Veranstaltung: Python 3.10 oder héher (3.12 oder 3.13 empfohlen)

Konsole, Skript, Notebook

o Konsole: interaktive Eingabe von Python-Befehlen

https://learn.microsoft.com/de-de/windows/wsl/install
https://devguide.python.org/versions/

Programmieren — D. Straub Einfiihrung

— niitzlich als schneller Taschenrechner
e Skript: Python-Code in einer Datei mit der Endung .py
— niitzlich fiir lingere Programme
o Jupyter Notebook: interaktive Umgebung fiir Datenanalyse und Visualisierung

— niitzlich fiir explorative Programmierung

Python ausprobieren, ohne es zu installieren

o Python Online: https://pythononline.net/

o JupyterLite: https://jupyter.org/try

o FKO7 DataHub (JupyterHub): https://datahub.cs.hm.edu/

o Github Codespaces: https://github.com/DavidMStraub/python-codespace

One-Minute-Paper
Moodle: https://link.hm.edu/y4vj

o Schreiben Sie 3 Dinge auf, die Sie heute gelernt haben
o Was war am unklarsten?

o Gibt es etwas spezielles, das Sie in diesem Kurs lernen mochten?

Programmieren — D. Straub Grundlagen

Grundlagen

1. Variablen
2. Einfache Datentypen (int, bool, float, str)

3. Verzweigungen

Variablen

Variablen speichern Werte:
X = 42

y =X

X = 100

print(y)

print(x)

Variablennamen: Fallstricke

class = "Mathematik" # SyntaxError!
klass = "Mathematik"

print(klass)

Schlecht lesbar:
1 =1

I =1

0=0

print(l, I, 0)

Namen: Konventionen
Variablen & Funktionen: snake_case I
first_name = "Alice"

calculate_average()

Konstanten: UPPER_SNAKE_CASE
MAX_SIZE = 100

Programmieren — D. Straub

Grundlagen

API_KEY = "secret"

Klassen: PascalCase I
class UserAccount:

pass

Privat: fihrender Unterstrich I
_internal_value = 42

_very_private = "secret"

Ganze Zahlen (int)

Integers haben unbegrenzte Préazision:

riesig = 2 #% 1000
print(len(str(riesig)))

print(riesig % 1000)

Division & Integers

print(10 / 3)
print(type(10 / 3))
print(10 // 3)

print(-10 // 3)

Wahrheitswerte (bool)

Booleans sind eigentlich Integers:

print(True + True)
print(True * 42)

print(False - True)

Programmieren — D. Straub Grundlagen

Vergleichsoperatoren

print(5 == 5)
print(5 != 3)
print(10 > 5)
print(5 >= 5)

print("Python" > "Java") # Lexikografischer Vergleich

Truthiness: Was ist wahr?

print(bool(0))
print(bool(42))
print(bool(""))

print(bool("0"))

Vergleichsoperatoren: Chaining

X =5

print(1 < x < 10)
print(10 < x < 20)

print(1 < x > 3)

Logische Operatoren

print(True and False)
print(True or False)

print(not True)

Programmieren — D. Straub

Grundlagen

print(not False)
print(not 0)

print(not "")

Kurzschlussauswertung

print(False and 1/0)
print(True or 1/0)

print(0 and print("Hallo"))

Gleitkommazahlen (float)

IEEE 754 Double Precision Fallstricke:

print(0.1 + 0.1 + 0.1)
print(0.1 + 0.1 + 0.1 == 0.3)

x = 0.1
print(f"{x:.20f}")

Vergleich von Gleitkommazahlen

a=0.1+ 0.1+ 0.1
b =0.3
tolerance = 1e-10

print(abs(a - b) < tolerance)

Extreme Werte

print(1e308)

print(1e309)

10

Programmieren — D. Straub Grundlagen

print(le-324)

print(le-325)

Strings

Verschiedene Anfihrungszeichen

single = 'Hallo'

double = "Welt"

print(single + " " + double)
triple = """Mehrzeiliger
Stringll nn

print(triple)

Strings und Unicode: Emoji

Strings unterstitzen vollstandig Unicode
message = "Python ist toll! IH"

print(message)

Emoji sind normale Zeichen
emoji_string = "III“

print(len(emoji_string))
Escape Sequences

print("C:\new_folder\test.txt")
print(r"C:\new_folder\test.txt")

print("Zeile 1\nZeile 2\tTab")

11

Programmieren — D. Straub Grundlagen

String-Formatierung mit f-Strings

name = "Alice"
age = 25
print(f"Hallo, ich bin {name} und {age} Jahre alt")

Vorteile gegeniiber dlteren Methoden: - Lesbar und intuitiv - Direkte Variableneinbettung -
Schneller als . format() oder %-Formatierung - Unterstiitzt Ausdriicke: f"Das Ergebnis ist {x

+ y}"

f-String Formatierung

number = 1234567.89
print(f"{number:,.2f}")

print(f"{number:>15,.2f}")

percent = 0.1234
print(f"{percent:.1%}")

Aufgabe: Personlicher Datenrechner

Schreibe ein Python-Skript, das persoénliche Daten verarbeitet:
Gegeben:

o Name, Geburtsjahr, Grofle (cm), Gewicht (kg)
Berechne und gib aus:

o Alter (aktuelles Jahr: 2025)
BMI (Gewicht / (Gréfie in m)?)
o Personendaten als formatierte f-Strings

o Wahrheitswerte fiir: ist volljahrig, ist normalgewichtig (BMI 18,5-24,9)

Kontrollstrukturen: Ubersicht
Was sind Kontrollstrukturen?

e Mechanismen zur Steuerung des Programmflusses

12

Programmieren — D. Straub

Grundlagen

o Bestimmen die Reihenfolge der Befehlsausfithrung

o Ermoglichen komplexe Programmlogik

Grundtypen: 1. Sequenz — Befehle nacheinander (Standard) 2. Verzweigung — Bedingte

Ausfithrung (if, elif, else) 3. Wiederholung — Schleifen (for, while)

Verzweigungen
Konzept:

e Programme miissen Entscheidungen treffen
o Verschiedene Pfade basierend auf Bedingungen

o Ermoglicht adaptive und intelligente Programme

Syntax-Muster:

if bedingungl:

Code wenn bedingungl wahr
elif bedingung2:

Code wenn bedingung2 wahr
else:

Code wenn keine Bedingung wahr

Verzweigungen: Wichtige Konzepte

 Einriickung (Indentation) definiert Codeblocke
e Bedingungen werden von oben nach unten gepriift

e Nur der erste wahre Zweig wird ausgefiihrt

Verzweigungen: Truthiness in der Praxis

name =
if name:

print("Name ist vorhanden")
else:

print("Kein Name angegeben")

13

Programmieren — D. Straub

Grundlagen

name = "Alice"
if name:

print("Name ist vorhanden")
else:

print("Kein Name angegeben")

Komplexe Bedingungen

age = 17
has_id = True
if age >= 18 and has_id:
print("Einlass gewdhrt")
elif age >= 16:
print("Einlass mit Begleitung")
else:

print("Kein Einlass")

age = 20
has_id = False
if age >= 18 and has_id:
print("Einlass gewdhrt")
elif age >= 16:
print("Einlass mit Begleitung")
else:

print("Kein Einlass")

Aufgabe

Schreibe ein Python-Programm um zu entscheiden, ob eine Rakete starten darf.

Eingaben:

o Treibstoff (%), Temperatur (°C), Crew (ja/nein), Wetter
Startbedingungen:

o Treibstoff 70%, Temperatur < 100°C, Crew bereit, Wetter “storm”

Ausgabe:

14

Programmieren — D. Straub Grundlagen

e “ Startfreigabe erteilt!” oder “Start abgebrochen!” + Grund

15

Programmieren — D. Straub

Funktionen

Funktionen

Kapselung von Komplexitat

The greatest limitation in writing software is our ability to understand the systems we

are creating.

There are two general approaches to fighting complexity .. The first is to eliminate

complexity by making code simpler and more obvious. .. The second is to

encapsulate it, so that programmers can work on a system without being exposed to

all of its complexity at once.

John Ousterhout, “A Philosophy of Software Design”

Warum Funktionen?

Das DRY-Prinzip: “Don’t Repeat Yourself”

FOOT = 0.3048
NAUTICAL_MILE = 1852.0

altitude_ft = 35000
altitude_m = altitude_ft * FOOT # Flughdhe
print(f"Flughohe: {altitude_ft} ft = {altitude_m:.0f} m")

distance_nm = 450
distance_m = distance_nm * NAUTICAL MILE # Strecke

print(f"Strecke: {distance_nm} nm = {distance_m:.0f} m")

usw.

Probleme: Code-Duplikation, Fehleranfillig, schwer zu d&ndern

16

Programmieren — D. Straub Funktionen

Funktionen: Kapselung (encapsulation) der Funktionalitat

def fuss_zu meter(fuss):

return fuss * 0.3048

def seemeilen_zu meter(seemeilen):

return seemeilen * 1852.0

Jetzt einfach und wiederverwendbar:
print(f"Flughdhe: {fuss_zu_meter(35000):.0f} m")
print(f"Landebahn: {fuss_zu_meter(8000):.0f} m")
print(f"Reichweite: {seemeilen_zu_meter(3000):.0f} m")

Vorteile: Wiederverwendbar, lesbar, wartbar, weniger Fehler!

Anatomie einer Funktion

def funktionsname(parameterl, parameter2):

Optionaler Docstring zur Dokumentation
Funktions-Code hier
ergebnis = parameterl + parameter?2

return ergebnis # Optional: Riickgabewert

Aufbau:

o def - Schliisselwort fiir Funktionsdefinition

o funktionsname - Aussagekriftiger Name (snake_case)
e () - Parameter in runden Klammern

e : - Doppelpunkt zum Start des Funktionsblocks

o FKingeriickter Code-Block

e return - Optionale Riickgabe

Erste einfache Funktion

Eine Funktion ohne Parameter fiihrt bei jedem Aufruf denselben Code aus.

17

Programmieren — D. Straub Funktionen

def mission_start():
print("I Mission Control: Start-Sequenz initiiert")

print(“i Alle Systeme bereit fir den Start!")

Funktion aufrufen:

mission_start()

Funktionen mit Parametern

Parameter ermoglichen es, Funktionen mit unterschiedlichen Eingabewerten flexibel zu nutzen.

def mission_status(spacecraft):
print(f"l {spacecraft} Status: Alle Systeme nominal")

print("Bereit fiir ndchste Mandver-Phase")

mission_status("ISS")
mission_status("Artemis I")

mission_status("Dragon Capsule")

Mehrere Parameter

Funktionen kénnen mehrere Parameter haben, die sowohl positionell als auch mit Namen

iibergeben werden kénnen.

def flugdaten_anzeigen(flugzeug_typ, hoehe_ft, geschwindigkeit_kn):
hoehe_m = hoehe_ft * 0.3048
geschwindigkeit_kmh = geschwindigkeit_kn * 1.852
print(f"l {flugzeug_typ}")
print(f"Hohe: {hoehe_ft} ft ({hoehe_m:.0f} m)")
print(f"Geschwindigkeit: {geschwindigkeit_kn} kn ({geschwindigkeit_kmh:.0f} km/h)")

Verschiedene Aufrufe:

flugdaten_anzeigen("Airbus A380", 35000, 450)
flugdaten_anzeigen(hoehe_ft=25000, flugzeug_typ="Boeing 737", geschwindigkeit_kn=420)

18

Programmieren — D. Straub Funktionen

Riickgabewerte: return

Mit return gibt eine Funktion einen berechneten Wert zuriick, der weiterverwendet werden kann.

def berechne_orbital_geschwindigkeit(hoehe_km):
Vereinfachte Berechnung fir kreisformige Umlaufbahn
erdradius = 6371 # km
gravitationskonstante = 398600 # km3/s?
r = erdradius + hoehe_km
geschwindigkeit = (gravitationskonstante / r) *% 0.5

return geschwindigkeit

ISS-Orbitalgeschwindigkeit berechnen:
408 # km

iss_hoehe
v_orbital = berechne_orbital_geschwindigkeit(iss_hoehe)
print(f"ISS Orbitalgeschwindigkeit: {v_orbital:.2f} km/s")

Mehrere Riickgabewerte

Funktionen kénnen mehrere Werte als Tupel zuriickgeben, die direkt entpackt werden kénnen.

def triebwerk_analyse(schub_newton, treibstoff_verbrauch_kg_s):
spezifischer_impuls = schub_newton / treibstoff_verbrauch_kg_s
triebwerk_masse = 1000 # kg
schub_gewichts_verhaeltnis = schub_newton / (triebwerk_masse * 9.81)

return spezifischer_impuls, schub_gewichts_verhaeltnis

isp, twr = triebwerk_analyse(2200000, 700)
print(f"Spez. Impuls: {isp:.0f} Nis/kg, Schub/Gewicht: {twr:.1f}")

Mehr zu ,, Tupeln“ (x, y) in Kapitel 5 (Datenstrukturen)!

Standardwerte fiir Parameter

Parameter kénnen Standardwerte erhalten, die verwendet werden, wenn beim Aufruf kein Wert

ibergeben wird.

19

Programmieren — D. Straub Funktionen

def mission_planung(ziel, startdatum="TBD", crew_groesse=3, notfall_backup=True):
print(f"H Mission zum {ziel}")
print(f"Start: {startdatum}")
print(f"Crew: {crew_groesse} Astronauten")
if notfall_backup:
print("I Notfall-Backup-Systeme aktiv")

Verschiedene Missionen:
mission_planung("Mond")
mission_planung("Mars", "2026-07-15")
mission_planung("ISS", crew_groesse=6)

mission_planung("Europa", startdatum="2030-01-01", notfall_backup=False)

Lokale vs. Globale Variablen

Lokale Variablen in Funktionen iiberdecken gleichnamige globale Variablen, ohne diese zu
verandern.

Globale Variable
temperatur = 20 # °C

def berechne_luftdichte(hoehe_m):
Lokale Variable (nur in der Funktion sichtbar)
temperatur = -50 # °C 1in der Stratosphare
Diese lokale Variable "ilberdeckt" die globale
dichte = 1.225 * (1 - 0.0065 * hoehe_m / 288.15) =** 4.256

return dichte
print(f"Bodentemperatur: {temperatur}°C") # 20°C (global)

luftdichte = berechne_luftdichte(10000)
print(f"Luftdichte in 10km Hohe: {luftdichte:.3f} kg/m=")

print(f"Nach Funktionsaufruf: {temperatur}°C") # Immer noch 20°C!

20

Programmieren — D. Straub

Funktionen

Funktionen mit Verzweigungen

def startfreigabe_pruefen(treibstoff_prozent, wetter, crew_bereit, systeme_ok):

if treibstoff_prozent < 95:

return False, "Treibstoff unzureichend"
elif wetter != "gut":

return False, f"Wetter ungiinstig: {wetter}"
elif not crew_bereit:

return False, "Crew nicht bereit"
elif not systeme_ok:

return False, "Systeme nicht nominal"
else:

return True, “I Startfreigabe erteilt!"

Verschiedene Szenarien testen:

freigabe, grund = startfreigabe_pruefen(98, "gut", True, True)

print(f"Freigabe: {freigabe} - {grund}")

freigabe, grund = startfreigabe_pruefen(90, "gut", True, True)

print(f"Freigabe: {freigabe} - {grund}")

Kompakte Startfreigabe-Funktion

def schnelle_startpruefung(treibstoff, wetter, crew, systeme):
return (treibstoff >= 95 and wetter == "gut" and

crew and systeme)

Verschiedene Raketen einzeln prifen:

falcon_heavy = schnelle_startpruefung(98, "gut", True, True)

sls = schnelle_startpruefung(92, "gut", True, True)

starship = schnelle_startpruefung(99, "windig", True, True)
print(f"Falcon Heavy: {'I GO' if falcon_heavy else 'I NO-GO'}")

print(f"sLs: {'[] Go' if sls else '[| NO-GO'}")
print(f"Starship: {'I GO' if starship else 'I NO-GO'}")

21

Programmieren — D. Straub Funktionen

Reine Funktionen und Nebeneffekte

Reine Funktionen haben zwei wichtige Eigenschaften: 1. Determinismus: Gleiche Eingabe —
Gleiche Ausgabe 2. Keine Nebeneffekte: Andern nichts auBerhalb der Funktion

Reine Funktion
def addiere(a, b):

return a + b

Unreine Funktion (Nebeneffekt: print)
def addiere_mit_ausgabe(a, b):
ergebnis = a + b
print(f"Ergebnis: {ergebnis}") # Nebeneffekt!

return ergebnis

Weitere Beispiele fiir Nebeneffekte: Andern globaler Variablen, Schreiben in Dateien, etc.

Vorteile reiner Funktionen

o Testbarkeit: Einfach zu testen (vorhersagbare Ausgabe)
e Debugging: Fehler leichter zu finden
e Wiederverwendbarkeit: Funktionieren in jedem Kontext

o Parallelisierung: Konnen sicher parallel ausgefiihrt werden

Reine Funktion - immer testbar
def celsius_zu_fahrenheit(celsius):

return celsius * 9/5 + 32

Test ist einfach und zuverlassig
assert celsius_zu_fahrenheit(0) == 32

assert celsius_zu_fahrenheit(100) == 212

Faustregel: Schreiben Sie so viele Funktionen wie méglich als reine Funktionen!

Aufgabe: Mitternachtsformel

Schreibe eine Funktion mitternachtsformel(a, b, c), die die Losungen der quadratischen

Gleichung

22

Programmieren — D. Straub Funktionen

ax? +br+c=0

berechnet. Verwende die Mitternachtsformel:

—b +Vb?% —4ac

2a

Ty10 =

Die Funktion soll drei Riickgabewerte haben: 1. Anzahl der Losungen (0, 1 oder 2) 2. Erste

Losung (oder None, wenn keine Losung) 3. Zweite Losung (oder None, wenn keine Losung)

23

Programmieren — D. Straub Schleifen

Schleifen

Wozu Schleifen?

o Wiederholung von Anweisungen automatisieren
o Daten sequenziell verarbeiten (Listen, Strings, Dateien)

e Simulationen und iterative Verfahren umsetzen

Zwei Typen von Schleifen: 1. while-Schleifen: Wiederholung solange Bedingung wahr ist 2.

for-Schleifen: Wiederholung iiber eine feste Anzahl oder Sammlung

24

Programmieren — D. Straub while-Schleifen

while-Schleifen

‘Was ist eine while-Schleife?

¢ Wiederholt Code solange eine Bedingung wahr ist
e Anzahl Wiederholungen ist vorher unbekannt

e Priift Bedingung vor jedem Durchlauf
Typische Anwendungsfalle:

e Benutzereingaben: Solange bis giiltige Eingabe
« Konvergenz: Bis gewiinschte Genauigkeit erreicht
e Suche: Bis Element gefunden oder Ende erreicht

e Simulation: Bis Zielzustand oder Zeitlimit

« Datenverarbeitung: Bis Datei/Stream zu Ende

Bedingung?

Ja

v

Nein
[Schleifenblock ausfithren J

while: Grundform

Die Schleife 1duft solange i < 3 wahr ist und zéhlt dabei von 0 bis 2.
i=0
while i < 3:

print(i)

25

Programmieren — D. Straub while-Schleifen

Endlosschleife vermeiden

Wenn die Zéhlvariable nicht verdndert wird, bleibt die Bedingung immer wahr und die Schleife

lauft endlos.

Schlechte Idee: i wird nie verandert - Endlosschleife
i=0
while i < 3:

print(i)

i += 1 # vergessen!

while: Zahlschleife (wenn Bedingungen flexibler sein sollen)

Mehrere Bedingungen kénnen kombiniert werden, um komplexere Abbruchkriterien zu definieren.

schritte = 0

energie = 10

while energie > 0 and schritte < 5:
print(f"Schritt {schritte}: Energie = {energie}")
energie -= 3

schritte += 1

Sentinel-Schleife (lesen bis Ende)

Die Schleife liest Werte ein, bis ein spezieller Sentinel-Wert (hier: leerer String) eingegeben wird.

zeile = input("Wert (leer beendet): ")

while zeile !=
print(f"Eingabe war: {zeile}")
zeile = input("Wert (leer beendet): ")

Iteration bis Toleranz (Konvergenz)

Die Schleife 1duft, bis ein Zielwert mit einer definierten Genauigkeit erreicht ist.

26

Programmieren — D. Straub while-Schleifen

20.0
22.0
schritt = 0.2

temp

ziel

iters = 0

while abs(temp - ziel) > 0.1 and iters < 200:
temp += schritt
iters += 1

print(f"Endtemperatur {temp:.1f}°C nach {iters} Schritten")

break und continue mitwhile

continue iiberspringt den Rest des aktuellen Durchlaufs, break beendet die Schleife sofort.

Suche die erste ungerade Zahl > 15 unter den Zahlen 1-20
nummer = 0
gefunden = None
while nummer <= 20:
nummer += 1
if nummer % 2 == 0O:
continue # Uberspringen (gerade Zahlen)
if nummer > 15:
gefunden = nummer
break # abbrechen (erste ungerade > 15)
print(f"Prife: {nummer}")
print(f"Gefunden: {gefunden}")

Aufgabe: Geschwindigkeitsregelung
Entwirf eine Regelung, die eine Geschwindigkeit v auf v_target bringt.

o Start: vy, Ziel: v,,., Proportionalfaktor (0 <k <1)
o Aktualisierung pro Schritt: v; 1 = v; + k(Vgarger — ;)
o Stoppe, Wenn [v — vy, < € oder max_steps erreicht

o Ausgabe: Anzahl Schritte und Endwert v

27

Programmieren — D. Straub for-Schleifen

for-Schleifen

o Wiederholen Code fiir jedes Element einer Sammlung
o Anzahl Wiederholungen ist meist vorher bekannt

e Durchlaufen sequenziell alle Elemente
Typische Anwendungsfille:

o Feste Anzahl Wiederholungen: z.B. 10x etwas ausfiihren
e Berechnung iiber Sequenzen: Summen, Mittelwerte, Transformationen

o Uber Sammlungen iterieren: Siehe Kapitel Datenstrukturen

[Nachstes Element? J

Ja Nein

v v

(Schleifenblock ausflihren]

for: Wiederholungen mit range()

range(n) erzeugt Zahlen von 0 bis n-1 und ermdglicht damit eine feste Anzahl von

Wiederholungen.

for i in range(5): # 0, 1, 2, 3, 4
print(f"Durchlauf {i}")

range(): Integer-Folgen erzeugen

range() ist ein spezieller Typ, der Zahlenfolgen effizient erzeugt, ohne sie alle im Speicher zu

halten.

for i in range(5): # 0,1,2,3,4
print(i)

28

Programmieren — D. Straub for-Schleifen

print(range(5)) # range ist ein spezieller Typ

range(start, stop)undrange(start, stop, step)

Mit Start-, Stop- und Schrittweite konnen beliebige Zahlenfolgen erzeugt werden, auch riickwarts.

for i in range(2, 7): # 2,3,4,5,6
print(i)

for t in range(10, -1, -2): # 10,8,6,4,2,0
print(t)

Uber Strings iterieren

Strings kénnen direkt mit for durchlaufen werden, um Zeichen fiir Zeichen zu verarbeiten.

for ch in "ABCD":
print(ch)

wort = "NASA"
for buchstabe in wort:

print(f"Buchstabe: {buchstabe}")

Anwendung: Zeichen zahlen

Eine Schleife iiber einen String ermoglicht das Zahlen bestimmter Zeichen durch bedingte

Inkrementierung.

text = "Programmieren”
anzahl_e = 0
for zeichen in text:
if zeichen == "e":
anzahl e += 1

print(f"Anzahl 'e': {anzahl_e}")

29

Programmieren — D. Straub for-Schleifen

break und continue in for-Schleifen

Auch in for-Schleifen kénnen continue und break verwendet werden, um die Ausfithrung zu

steuern.

for zahl in range(1, 11):
if zahl % 3 ==
continue # Uberspringe Vielfache von 3
if zahl > 7:
break # Stoppe bei Zahlen > 7
print(zahl)

Verschachtelte Schleifen: Multiplikationstabelle
Schleifen konnen ineinander verschachtelt werden, um iiber mehrdimensionale Strukturen zu
iterieren.

for i in range(1, 4):
for j in range(1, 4):
print(f"{i} x {j} = {i+j}")
print("---") # Trenner nach jeder Zeile

Aufgabe: Quersumme berechnen

Schreibe eine Funktion, die die Quersumme einer positiven Ganzzahl berechnet.

o Wandle die Zahl in einen String um

Iteriere Uiber alle Zeichen

o Wandle jedes Zeichen zuriick in int und addiere

o Teste mit verschiedenen Zahlen (z.B. 123 — 6, 9876 — 30)

Aufgabe: Batterie-Lade-Simulation

o Batterie startet bei 3.0V, Ziel: 4.2V, Sicherheitslimit: 4.5V
e Spannung steigt pro Zyklus um 0.1V, max. 50 Zyklen

Aufgaben:
1. Simuliere den Ladeprozess mit einer Schleife 2. Stoppe, wenn Zielspannung, Sicherheislimit

oder max. Zyklen erreicht sind 3. Gib nur alle 5 Zyklen den Status aus 4. Am Ende:

30

Programmieren — D. Straub for-Schleifen

Endspannung und Anzahl Zyklen ausgeben
-

> 7

-
| —

31

Programmieren — D. Straub Einschub

: Wie fange ich an?

Einschub: Wie fange ich an?

Funktion oder Skript?

Erste Entscheidung:

Funktion Skript

Wiederverwendbarer Baustein Vollsténdiges Programm
Parameter — return input() — print()

Beispiel: def quadrat(x) Beispiel: Taschenrechner

Faustregel:

e Wird es mehrfach verwendet? — Funktion

o Ist es ein eigenstidndiges Programm? — Skript

Hinweis: Skripte kénnen auch Funktionen enthalten!

Vorgehen: Funktion schreiben

Schritt 1: Signatur klaren

def funktionsname(parameterl, parameter2):
Was kommt rein? Was kommt raus?

return ergebnis

Fragen:

e Welche Eingabewerte? — Parameter
e Was zuriickgeben? — return

e Welche Datentypen?

Schritt 2: Implementieren Schirtt 3: Testen

Vorgehen: Skript schreiben

Denken Sie in 3 Phasen: Eingabe — Verarbeitung — Ausgabe

32

Programmieren — D. Straub Einschub: Wie fange ich an?

1. EINGABE
name = input("Name? ")

alter = int(input("Alter? "))

2. VERARBEITUNG
geburtsjahr = 2024 - alter

3. AUSGABE
print(f"Hallo {name}!")
print(f"Geboren ca. {geburtsjahr}")

o Woher kommen die Daten? (Tastatur, Datei, ...)
e Was muss berechnet werden?

o Wie sieht die Ausgabe aus?

33

Programmieren — D. Straub

Datenstrukturen

Datenstrukturen

Warum Datenstrukturen?

Bisher: einzelne Werte in Variablen

messung_1 = 15.2

messung_2 = 16.1
messung_3 = 14.8
messung_4 = 15.9
...

Problem: Unhandlich bei vielen Werten!

Losung: Datenstrukturen gruppieren zusammengehorige Daten

Uberblick: wichtigste Datenstrukturen in Python

Typ Geordnet Verdnderbar Duplikate Verwendung

Liste Allgemeine Sammlung
Tupel Unveranderliche Daten
Dictionary (Keys) Key-Value-Paare

Set Eindeutige Elemente

NumPy-Array

Numerische Berechnungen

34

Programmieren — D. Straub

Listen

Listen

Was sind Listen?

o Geordnete Sammlung von Elementen

e Erlaubt Duplikate

e Kann verschiedene Datentypen enthalten

Listen erstellen

Veranderbar (mutable): Elemente kénnen hinzugefiigt, entfernt, gedindert werden

Listen werden mit eckigen Klammern [] erstellt und kénnen beliebig viele Elemente enthalten.

Leere Liste
messungen = []

print(messungen)

Liste mit Werten
temperaturen = [20.5, 21.2, 19.8, 22.1]

print(temperaturen)

Listen aus anderen Objekten erstellen

Mit 1ist() konnen andere Objekte in Listen umgewandelt werden.

Aus range() erstellen
gerade_zahlen = list(range(0, 10, 2))
print(gerade_zahlen)

Aus String erstellen
buchstaben = list("Python")
print(buchstaben)

Auf Elemente zugreifen: Indexierung

Der Index startet bei 0. Negative Indizes zdhlen vom Ende her.

35

Programmieren — D. Straub

Listen

planeten = ["Merkur", "Venus", "Erde", "Mars"]

print(planeten[0]) # Erstes Element
print(planeten[2]) # Drittes Element

print(planeten[-1]) # Letztes Element

Slicing: Teilbereiche extrahieren

Mit [start:stop:step] kénnen Teillisten extrahiert werden.

zahlen = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
print(zahlen[2:5]) # Index 2 bis 4 (5 exklusiv)

print(zahlen[:4]) # Vom Anfang bis Index 3
print(zahlen[6:]) # Von Index 6 bis zum Ende

print(zahlen[::2]) # Jedes zweite Element

Lange einer Liste

Die Funktion len() gibt die Anzahl der Elemente zuriick.

sensoren = ["Temperatur", "Druck", "Beschleunigung"]
anzahl = len(sensoren)

print(f"Anzahl Sensoren: {anzahl}")

Elemente hinzufiigen

append() figt am Ende hinzu, insert() an beliebiger Position.

missionen = ["Apollo 11", "Apollo 13"]

print(f"Vorher: {missionen}")

missionen.append("Artemis I")

print(f"Nach append: {missionen}")

missionen.insert(1, "Apollo 12")

print(f"Nach insert: {missionen}")

36

Programmieren — D. Straub Listen

Elemente entfernen

remove() entfernt nach Wert, pop() entfernt an Position und gibt das Element zuriick.

werte = [10, 20, 30, 40, 50]
werte.remove(30) # Entfernt das erste Vorkommen von 30

print(f"Nach remove: {werte}")

letzter = werte.pop() # Entfernt und gibt letztes Element zuriick
print(f"Entfernt: {letzter}, Ubrig: {werte}")

Elemente suchen

Mit in priifen, ob ein Element vorhanden ist.
komponenten = ["Triebwerk", "Tank", "Avionik", "Tank"]

print("Avionik" in komponenten) # Priifen ob Element vorhanden

print("Kabine" in komponenten)

Listen sortieren

Die Methode sort() sortiert die Liste direkt (in-place), sorted() gibt eine neue sortierte Liste

zurtck.

hoehen = [350, 120, 280, 95, 410]
hoehen.sort() # Sortiert die Liste direkt

print(hoehen)

werte = [350, 120, 280, 95, 410]

sortiert = sorted(werte) # Gibt neue Liste zuriick
print(f"Original: {werte}")

print(f"Sortiert: {sortiert}")

Uber Listen iterieren

Mit for-Schleifen konnen alle Elemente durchlaufen werden.

treibstoffe = ["RP-1", "LOX", "LH2"]

for treibstoff in treibstoffe:

37

Programmieren — D. Straub Listen

print(f"Treibstoff: {treibstoff}")

Aufgabe: Messdatenverarbeitung

Gegeben: Liste mit Temperaturen einer Woche in °C

temperaturen = [15.2, 16.8, 14.5, 18.3, 17.1, 16.9, 15.8]

Aufgaben: 1. Berechne Durchschnittstemperatur 2. Finde Minimum und Maximum 3. Z&hle

Tage mit Temperatur > 16°C

38

Programmieren — D. Straub Tupel

Tupel

Was sind Tupel?

o Geordnete Sammlung von Elementen
e Unverdnderbar (immutable): Nach Erstellung nicht mehr d&nderbar
e Erlaubt Duplikate

e Kann verschiedene Datentypen enthalten
Verwendung:

e Daten, die nicht gedndert werden sollen
o Riickgabe mehrerer Werte aus Funktionen
o Dictionary-Keys (Listen nicht moglich!)

e Speichereflizienter als Listen

Tupel erstellen

Tupel werden mit runden Klammern () erstellt.

Mit runden Klammern
koordinaten = (51.5, 0.1)

print(koordinaten)

Ohne Klammern (tuple packing)
position = 10.0, 20.0, 30.0

print(position)

Auf Tupel-Elemente zugreifen

Tupel verwenden die gleiche Indexierung wie Listen.

launch_daten = ("Falcon 9", "2023-10-05", 70.0, True)
print(launch_daten[0])

print(launch_daten[-1])

39

Programmieren — D. Straub Tupel

Tuple Unpacking

Tupel-Elemente kénnen direkt mehreren Variablen zugewiesen werden.

koordinaten = (48.1, 11.6)
latitude, longitude = koordinaten

print(f"Breitengrad: {latitude}, Langengrad: {longitude}")

Werte tauschen (sehr elegant in Python!)

a=>5
b = 10
a, b =b, a

print(f"a={a}, b={b}")

Tupel sind unveranderbar

Nach der Erstellung kénnen Tupel-Elemente nicht mehr gedndert werden.

punkt = (10, 20)
punkt[0] = 15 # TypeError: 'tuple' object does not support item assignment
print(punkt)

Tupel vs. Listen: Wann was?
Listen verwenden:

e Daten, die sich d&ndern kénnen
o Sammlung gleichartiger Elemente

e Wenn Reihenfolge wichtig und verdnderbar ist
Tupel verwenden:

e Daten, die konstant bleiben sollen

Unterschiedliche Datentypen gruppieren (z.B. x, y,)
e Riickgabe mehrerer Werte aus Funktionen
o Als Dictionary-Keys

o Geringfiigig schneller und speichereffizienter

40

Programmieren — D. Straub

Tupel

Funktionen mit Tupel-Riickgabe

Funktionen kénnen mehrere Werte als Tupel zuriickgeben.

def berechne_kreisflaeche(radius):
pi = 3.14159
flaeche = pi * radius #** 2
umfang = 2 % pi * radius

return flaeche, umfang # Gibt Tupel zuriick
Unpacking bei Funktionsaufruf

a, u = berechne_kreisflaeche(5.0)
print(f"Flache: {a:.2f}, Umfang: {u:.2f}")

41

Programmieren — D. Straub Dictionaries

Dictionaries

Was sind Dictionaries?

o Key-Value-Paare: Jedem Schliissel (Key) ist ein Wert zugeordnet
o Geordnet (seit Python 3.7): Einfligereihenfolge wird beibehalten
o Verdnderbar: Keys und Values kénnen hinzugefiigt /entfernt werden

o Keys missen eindeutig und unveranderbar sein (z.B. Strings, Zahlen, Tupel)
Verwendung:

o Strukturierte Daten (z.B. Eigenschaften eines Objekts)
e Schnelles Nachschlagen von Werten
o Konfigurationen

e Zahlen von Vorkommen

Dictionary erstellen

Dictionaries werden mit geschweiften Klammern {} und Doppelpunkt : erstellt.

Mit Werten

astronaut = {

"name": "Neil Armstrong",
"mission": "Apollo 11",
"alter": 38,
"gestartet": True

}

print(astronaut)

Auf Werte zugreifen

Werte werden iiber ihren Schliissel (Key) abgerufen.

print(astronaut["name"])

Mit get() - sicherer bei fehlenden Keys

print(astronaut.get("mission"))

42

Programmieren — D. Straub

Dictionaries

Standardwert wenn Key nicht existiert

print(astronaut.get("geburtsort"”, "Unbekannt"))

Werte hinzufiigen und dndern

Neue Keys werden einfach hinzugefiigt, bestehende werden tiberschrieben.

rakete = {"name": "Falcon 9", "stufen": 2}
Neuen Eintrag hinzufiligen
rakete["hersteller"] = "SpaceX"

print(rakete)

Wert andern
rakete["stufen"] = 3

print(rakete)

Uber Dictionaries iterieren

Mit .items() konnen Keys und Values gleichzeitig durchlaufen werden.

sensoren = {"temp": 23.5, "druck": 1015, "luftf": 45}
Uber Key-Value-Paare
for key, value in sensoren.items():

print(f"{key} = {value}")

Verschachtelte Dictionaries

Dictionaries konnen andere Dictionaries enthalten — niitzlich fiir strukturierte Daten.

flugzeuge = {

"A380": {
"hersteller": "Airbus",
"sitze": 853,
"reichweite_km": 15200

},

"B787": {
"hersteller": "Boeing",

"sitze": 242,

43

Programmieren — D. Straub Dictionaries

"reichweite_km": 14140

}
print(flugzeuge["A380"]["sitze"])

Live-Aufgabe: Worterbuch-Statistik

Schreibe ein Programm, das zdhlt, wie oft jedes Wort in einem Text vorkommt.
Gegeben:

text = "Python ist toll Python macht Spass toll toll"

Aufgabe: Erstelle ein Dictionary mit der Worthaufigkeit.

Tipp: Verwende .split() um den Text in Worter zu teilen.

Erwartetes Ergebnis: {"Python": 2, "ist": 1, "toll": 3, ...}

44

Programmieren — D. Straub

Sets

Sets

Was sind Sets?

o Ungeordnete Sammlung einzigartiger Elemente

e Keine Duplikate: Jedes Element kommt nur einmal vor
Verwendung:

o Duplikate entfernen

o Mengenoperationen (Vereinigung, Schnitt, Differenz)

Sets erstellen

Sets werden mit geschweiften Klammern {} erstellt und entfernen Duplikate automatisch.

Duplikate werden automatisch entfernt
zahlen = {1, 2, 2, 3, 3, 3, 4}
print(zahlen)

Aus Liste erstellen
liste = [1, 1, 2, 2, 3, 3]
eindeutig = set(liste)

print(eindeutig)

Sets: Duplikate entfernen

Der haufigste Anwendungsfall: Duplikate aus Listen entfernen.

messungen = [15.2, 16.1, 15.2, 17.3, 16.1, 14.8]
eindeutig = list(set(messungen))
print(eindeutig)

Sortiert

sortiert_eindeutig = sorted(set(messungen))

print(sortiert_eindeutig)

45

Programmieren — D. Straub Sets

Wann Sets verwenden?
Sets verwenden:

e Duplikate entfernen
o Schnelle Mitgliedschaftstests

o Mengenoperationen (Vereinigung, Schnitt, Differenz)
Listen verwenden:

e Reihenfolge wichtig
e Duplikate erlaubt

Dictionaries verwenden:

o Key-Value-Zuordnungen

46

Programmieren — D. Straub NumPy-Arrays

NumPy-Arrays

Was ist NumPy?

NumPy (Numerical Python) ist die Standardbibliothek fiir numerische Berechnungen in Python.
NumPy-Arrays:

o Effiziente mehrdimensionale Arrays
o Viel schneller als Python-Listen fiir numerische Operationen
» Vektorisierte Operationen (keine Schleifen nétig!)

o Basis fiir wissenschaftliches Rechnen in Python

Installation: pip install numpy

NumPy importieren und Arrays erstellen

NumPy-Arrays sind wie Listen, aber optimiert fiir numerische Berechnungen.

import numpy as np
Liste zu Array
messungen = np.array([15.2, 16.1, 14.8, 17.3]1)

print(messungen)

print(type(messungen))

Arrays vs. Listen: Der Unterschied

NumPy erlaubt vektorisierte Operationen — viel einfacher und schneller!

Listen: Element fir Element mit Schleife
liste = [1, 2, 3, 4]
verdoppelt = []
for x in liste:

verdoppelt.append(x * 2)
print(verdoppelt)

NumPy: Vektorisiert (alle auf einmal!)
array = np.array([1, 2, 3, 4])
print(array * 2)

47

Programmieren — D. Straub

NumPy-Arrays

Mathematische Funktionen

NumPy bietet viele mathematische Funktionen fiir Arrays.

werte = np.array([1, 4, 9, 16, 25])
wurzel = np.sqrt(werte)

print(f"wurzel: {wurzel}")

quadrat = werte #* 2

print(f"Quadrat: {quadrat}")

Statistische Funktionen

NumPy bietet Funktionen fiir statistische Berechnungen.

temperaturen = np.array([15.2, 16.8, 14.5, 18.3,

17.11)

print(f"Mittelwert: {np.mean(temperaturen):.2f}")

print(f"Min: {np.min(temperaturen)}, Max: {np.max(temperaturen)}")

Mehrdimensionale Arrays

NumPy unterstiitzt auch mehrdimensionale Arrays (Matrizen).

2D-Array (Matrix)

matrix = np.array([

[1, 2, 31,

[4, 5, 6]
D
print(matrix)

print(f"Shape: {matrix.shape}") # (Zeilen, Spalten)

NumPy vs. Python-Listen: Zusammenfassung

NumPy-Arrays

Python-Listen

Geschwindigkeit Sehr schnell
Speicher Effizient

48

Langsamer
Mehr Verbrauch

Programmieren — D. Straub

NumPy-Arrays

NumPy-Arrays

Python-Listen

Operationen Vektorisiert
Datentypen Nur gleiche
Grofle Fix

Schleifen notig
Gemischt moglich

Dynamisch

Faustregel: NumPy fiir numerische Berechnungen, Listen fiir alles andere!

Zusammenfassung: Datenstrukturen

Typ Verwendung Beispiel
Liste Geordnete, veranderbare Sammlung [1, 2, 3]
Tupel Unveranderbare Daten, mehrere (x, vy, z)
Riickgabewerte
Dictionary Key-Value-Paare, strukturierte Daten {"name": "ISS", "crew": 7}
Set Eindeutige Elemente, {1, 2, 3}

Mengenoperationen

NumPy-Array Numerische Berechnungen

np.array([1, 2, 3])

Wichtigste Entscheidung: Welche Struktur passt zu meinen Daten?

Aufgabe: Flugdatenanalyse

Gegeben: Messdaten von 5 Fliigen

fluege = {
"LH123": {"distanz_km": 850, "dauer_min":
"BA456": {"distanz_km": 1200, "dauer_min":
"AF789": {"distanz_km": 650, "dauer_min":
"KL321": {"distanz_km": 950, "dauer_min":
"LX654": {"distanz_km": 720, "dauer_min":
}

95, "passagiere": 145},
135, "passagiere": 180},
80, "passagiere": 120},
110, 155},
85, "passagiere": 130}

"passagiere":

Aufgaben: 1. Berechne Durchschnittsgeschwindigkeit jedes Flugs (km/h) 2. Finde den

schnellsten Flug 3. Erstelle Liste aller Passagierzahlen und berechne Durchschnitt 4. Welche

Fliige hatten mehr als 150 Passagiere?

49

Programmieren — D. Straub Module € Bibliotheken

Module & Bibliotheken

Wiederverwendung: Das Modul-Konzept
Problem: Nicht alles selbst programmieren!
Losung: Module — vorgefertigte Sammlungen von Funktionen

Analogie: - Bausatz = Programm - Einzelne Teile = Funktionen - Ersatzteillager =
Module/Bibliotheken

Vorteile:

e Code wiederverwendbar
o Getestet und optimiert
o Zeit sparen! ### Was sind Module? Ein Modul ist eine Python-Datei (.py), die

Funktionen, Klassen und Variablen enthélt.

Beispiel: Eine Datei umrechnung.py koénnte enthalten:

def fuss_zu_meter(fuss):
return fuss * 0.3048

def seemeilen_zu_km(seemeilen):

return seemeilen % 1.852

Das ist ein Modul! Es kann in anderen Programmen wiederverwendet werden.
Module ermoglichen:

o Strukturierung grofier Programme
e Wiederverwendung von Code

e Zusammenarbeit im Team

Die Python-Standardbibliothek

Python kommt mit einer umfangreichen Standardbibliothek — eine Sammlung von Modulen,

die direkt verfiigbar sind.

Wichtige Module (Auswahl): | Modul | Beschreibung | | -| | | math |

Mathematische Funktionen | | random | Zufallszahlen | | datetime | Datum und Zeit | | os |

50

Programmieren — D. Straub

Module € Bibliotheken

Betriebssystem-Funktionen | | json | JSON-Daten verarbeiten | | re | Reguldre Ausdriicke |

Dokumentation: https://docs.python.org/3/library/

Module importieren: Grundformen

Drei wichtige Import-Varianten:

1. Ganzes Modul importieren
import math
ergebnis = math.sqrt(16)

print(ergebnis)

2. Einzelne Funktionen importieren
from math import sqrt, pi

ergebnis = sqrt(16)

print(f"m = {pi:.5f}")

3. Modul mit Alias importieren
import math as m
ergebnis = m.sqrt(16)

print(ergebnis)

Das math-Modul: Mathematische Funktionen

Das math-Modul bietet grundlegende mathematische Funktionen und Konstanten.

import math

Konstanten
print(f"m = {math.pi:.5f}")
print(f"e = {math.e:.5f}")

Grundfunktionen

print(f"V16 = {math.sqrt(16)}")
print(f"22 = {math.pow(2, 3)}")
print(f"[[3.7[] = {math.floor(3.7)}")
print(f”I3.2I = {math.ceil(3.2)}")

o1

Programmieren — D. Straub Module € Bibliotheken

Trigonometrische Funktionen

Das math-Modul enthélt alle wichtigen trigonometrischen Funktionen (arbeiten mit Radiant!).

import math

Umrechnung Grad > Radiant
winkel_grad = 45

winkel_rad = math.radians(winkel_grad)

print(f"sin(45°)
print(f"cos(45°)
print(f"tan(45°)

{math.sin(winkel _rad):.4f}")
{math.cos(winkel_rad):.4f}")
{math.tan(winkel _rad):.4f}")

Anwendung: Flugbahn berechnen

Berechnung der Wurfweite bei schrigen Wurf mit math.

import math

def wurfweite(v0, winkel_grad):

Wurfweite bei schrdgen Wurf (ohne Luftwiderstand)
g =9.81 # m/s?

winkel_rad = math.radians(winkel_grad)

weite = (vO**2 * math.sin(2 = winkel_rad)) / g

return weite

Beispiel: Kanonenkugel

geschwindigkeit = 100 # m/s

winkel = 45 # Grad

weite = wurfweite(geschwindigkeit, winkel)
print(f"Wurfweite: {weite:.1f} m")

Das random-Modul: Zufallszahlen

Das random-Modul erzeugt Pseudozufallszahlen — wichtig fiir Simulationen und Spiele.

52

Programmieren — D. Straub Module € Bibliotheken

import random

Zufallige Gleitkommazahl zwischen 0 und 1

print(random.random())

Zufallige Ganzzahl in einem Bereich
wuerfel = random.randint(1, 6)
print(f"wirfelwurf: {wuerfel}")

Zufalliges Element aus Liste

farben = ["rot", "grin", "blau", "gelb"]
zufall = random.choice(farben)
print(f"Zufallige Farbe: {zufall}")

Reproduzierbare Zufallszahlen

Mit seed() konnen Zufallszahlen reproduzierbar gemacht werden — wichtig fiir Tests!

import random

Mit Seed: Immer gleiche "Zufalls"-Folge
random.seed(42)

print(random.randint(1, 100))
print(random.randint(1, 100))

Nochmal mit gleichem Seed
random.seed(42)
print(random.randint(1, 100))
print(random.randint(1, 100))

Anwendung: Monte-Carlo-Simulation

Schétzung von durch zuféllige Punkte im Einheitsquadrat.

import random

def schaetze_pi(n):
"""Schatzt m mit Monte-Carlo-Methode"""

53

Programmieren — D. Straub Module € Bibliotheken

treffer = 0
for _ in range(n):

random.random()

X

y
if x**2 + y%%2 <= 1: # Punkt im Viertelkreis?

random.random()

treffer += 1

return 4 * treffer / n

Mit unterschiedlichen StichprobengroBen
print(f"m = {schaetze_pi(1000):.4f} (1.000 Punkte)")
{schaetze_pi(100000):.4f} (100.000 Punkte)")

14

print(f"m

Module: Best Practices

Empfohlen:

import math

import random

Klar, woher Funktionen kommen

x = math.sqrt(16)
y = random.randint(1, 10)
Vermeiden:

from math import =

from random import *

Unklar, woher sqrt kommt - Namenskonflikte moglich!

x = sqrt(16)

Faustregel: Immer explizite Imports — besser lesbar und wartbar!

Hilfe zu Modulen bekommen

Python bietet eingebaute Hilfe fiir Module und Funktionen.

54

Programmieren — D. Straub Module € Bibliotheken

import math

Alle Funktionen eines Moduls anzeigen
print(dir(math))

Hilfe zu einer Funktion

help(math.sqrt)

Tipp: In Jupyter Notebook: ? fiir Hilfe, z.B. math.sqrt?

Aufgabe: Raketenstart-Simulation
Simuliere einen Raketenstart mit Zufallselementen.

Aufgaben: 1. Importiere random und math 2. Erzeuge zufillige Startgeschwindigkeit zwischen
7500 und 8500 m/s 3. Erzeuge zufélligen Startwinkel zwischen 85° und 90° 4. Berechne Hohe
nach 60 Sekunden: h = v - ¢ - sin(a) 5. Fithre Simulation 5x aus mit random.seed(i) fiir i von

0 bis 4 6. Gib fiir jeden Start aus: Geschwindigkeit, Winkel, erreichte Hohe

Erwartete Ausgabe: 5 verschiedene Szenarien mit jeweils 3 Werten

Drittanbieter-Module: Mehr als die Standardbibliothek
Standardbibliothek reicht nicht immer!

Die Python-Community hat Tausende spezialisierte Module entwickelt:

Bereich Beispiele

Wissenschaft numpy, scipy, pandas
Visualisierung matplotlib, plotly, seaborn
Web requests, flask, django

Machine Learning scikit-learn, tensorflow, pytorch

PyPI (Python Package Index): https://pypi.org/ — iiber 500.000 Pakete!

Was ist pip?

pip = “Pip Installs Packages” (rekursives Akronym)

55

Programmieren — D. Straub

Module € Bibliotheken

e Der Standard-Paketmanager fiir Python
o Liadt Pakete von PyPI herunter
o Installiert sie automatisch mit allen Abhéngigkeiten

o Wird mit Python mitgeliefert (seit Python 3.4)
Analogie:

e App Store fiir Smartphones = PyPI fiir Python
e App-Installation = pip install

Pakete mit pip installieren

Grundlegende Befehle:

#t Paket installieren

pip install paketname

#t Bestimmte Version installieren

pip install paketname==1.2.3

Paket aktualisieren

pip install --upgrade paketname

Paket deinstallieren

pip uninstall paketname

Installierte Pakete auflisten

pip list

Eigene Module erstellen
Jede Python-Datei ist ein Modul!

Erstelle eine Datei physik.py:

Physikalische Konstanten und Berechnungen

Konstanten
LICHTGESCHWINDIGKEIT = 299792458 # m/s

56

Programmieren — D. Straub Module € Bibliotheken

GRAVITATIONSKONSTANTE = 6.67430e-11 # m*/(kg-s?)

def energie_masse(masse):

Berechnet Energie aus Masse: E = mc2"""
return masse * LICHTGESCHWINDIGKEIT =##% 2

def freier_fall_geschwindigkeit(hoehe):
"""Geschwindigkeit im freien Fall"""
g =9.81 # m/s?
return (2 * g * hoehe) ** 0.5

Eigenes Modul verwenden

Verwendung in einer anderen Datei (z.B. main.py im gleichen Verzeichnis):

import physik

Konstanten verwenden

print(f"c = {physik.LICHTGESCHWINDIGKEIT:,} m/s")

Funktionen verwenden
masse = 0.001 # kg (1 Gramm)
energie = physik.energie_masse(masse)

print(f"Energie von 1g: {energie:.2e} Joule")

Freier Fall aus 100m
v = physik.freier_fall_geschwindigkeit(100)
print(f"Geschwindigkeit: {v:.1f} m/s")

Wichtig: Beide Dateien miissen im gleichen Verzeichnis liegen!

if __name__ == "__main

Problem: Code soll nur beim direkten Aufruf ausgefithrt werden, nicht beim Import.

test_modul.py
def berechne_etwas(x):

return x * 2

57

Programmieren — D. Straub

Module € Bibliotheken

Dieser Block wird nur bei direktem Aufruf ausgefihrt

if _name__ == " main__
Tests oder Beispiele hier
print("Teste das Modul:")
print(berechne_etwas(5))

print(berechne_etwas(10))

Verwendung:

e python test_modul.py — Tests werden ausgefiihrt

e import test_modul — Nur Funktion verfiighar, keine Ausgabe

Pakete: Mehrere Module gruppieren (Ausblick)
Fiir groflere Projekte: Module in Paketen organisieren

mein_projekt/

I— main.py

L— physik/
I— __init__.py # Macht physik zum Paket

I— mechanik.py

|— thermodynamik.py
L— elektrik.py

Verwendung:

from physik.mechanik import freier_fall

from physik.elektrik import ohmsches_gesetz

Hinweis: Pakete sind komplexer — fiir gréflere Projekte relevant!

58

Programmieren — D. Straub Algorithmen, Pseudocode € Struktogramme

Algorithmen, Pseudocode & Struktogramme

Uberblick: Algorithmen, Pseudocode & Struktogramme
Zwei sprachunabhdingige Werkzeuge zur Planung von Algorithmen

1. Pseudocode: Erst denken, dann coden! Ein informelles Hilfsmittel
2. Struktogramme: Grafische Darstellung von Algorithmen. Als formalisertes Hilfsmittel

oder zur Dokumentation von Algorithmen

Ziel: Systematisches Vorgehen beim Programmieren

Was ist ein Algorithmus?
Definition: Eine eindeutige, schrittweise Handlungsvorschrift zur Losung eines Problems
Eigenschaften:

e Endlich: Beschreibung hat endliche Lénge
o Ausfiihrbar: Jeder Schritt ist durchfiihrbar
e Determiniert: Jeder Schritt ist eindeutig festgelegt

e Terminiert: Endet nach endlich vielen Schritten

Algorithmus: einfaches Beispiel
Problem: Finde die grofite Zahl in einer Liste

Algorithmus in Alltagssprache: 1. Nimm die erste Zahl als ,aktuelles Maximum® 2. Gehe
alle weiteren Zahlen durch 3. Wenn eine Zahl gréfier ist, merk sie dir als neues Maximum 4. Am
Ende hast du die grofite Zahl

Problem: Noch nicht prazise genug fiir die Umsetzung in Code!

59

Programmieren — D. Straub

Pseudocode

Pseudocode

algorithmus finde_maximum(liste):

maximum = erstes Element der Liste

flir jedes weitere Element in liste:
wenn Element groBer als maximum:

maximum = Element

gib maximum zuriick

Warum erst Pseudocode?
Das Problem beim Programmieren:

o Zwei Herausforderungen vermischen sich:
1. Was soll der Algorithmus tun? (Logik)
2. Wie schreibe ich das in Python? (Syntax)

Trennung der Probleme

e Pseudocode = Denkwerkzeug fiir die Planung
o FErst die Logik kldren, dann in Code umsetzen

e Sprachunabhéngig: funktioniert fiir alle Programmiersprachen

Was ist Pseudocode?
Pseudocode = Zwischenschritt zwischen Alltagssprache und Programmcode
Eigenschaften:

o Keine festen Regeln! Jeder kann seinen eigenen Stil entwickeln
o Fokus auf die Logik, nicht auf Syntax-Details
e Auch auf Deutsch bzw. in der eigenen Sprache

e Noch nicht ausfiithrbar
Ziel: Die Was-Frage beantworten, bevor man sich mit der Wie-Frage beschéftigt

Motto: Erst denken, dann coden!

60

Programmieren — D. Straub

Pseudocode

Pseudocode: Grundelemente (moglicher Stil)
Anweisungen:

variable = wert

ausgabe "Text"
Verzweigungen:

wenn bedingung:
anweisungen
sonst:

anweisungen
Schleifen:

fur 1 von 1 bis n:

anweisungen

Beispiel: Maximum finden
Pseudocode:
algorithmus finde_maximum(liste):

maximum = erstes Element von liste

flir jedes weitere Element in liste:
wenn Element groBer als maximum:
maximum = Element

gib maximum zuriick

Vorteile: Logik ist klar, keine Syntax-Sorgen

Von Pseudocode zu Python
Pseudocode:

algorithmus finde_maximum(liste):
maximum = erstes Element der Liste

flir jedes weitere Element in liste:

61

Programmieren — D. Straub

Pseudocode

wenn Element groRer als maximum:

maximum = Element

gib maximum zuriick

Python:

def finde_maximum(liste):
maximum = liste[0]
for zahl in liste:
if zahl > maximum:
maximum = zahl

return maximum

Ein weiteres Beispiel
Problem: Priife, ob eine Zahl gerade ist
Pseudocode:

algorithmus ist_gerade(n):
wenn n ohne Rest durch 2 teilbar:
gib True zuriick
sonst:

gib False zuriick

Python:

def ist_gerade(n):
if n % 2 == 0:
return True
else:

return False

Gruppenarbeit

Aufgabe: Schreiben Sie Pseudocode fiir folgende Funktion aus dem letzten Praktikum:

def ist_prim(zahl):

"""Gibt aus, ob “zahl® eine Primzahl ist.

if zahl ==

62

Programmieren — D. Straub Pseudocode

return False
for teiler in range(2, zahl):
if zahl % teiler ==
return False
if teiler+2 > zahl:
break

return True

63

Programmieren — D. Straub

Struktogramme

Struktogramme

Struktogramme = Grafische Darstellung von Algorithmen
Entwickelt von: Nassi & Shneiderman (1973)

Ziel: Strukturiertes Programmieren fordern

Funktion finde_maximum(liste)

maximum = liste[0]

far jedes zahl in liste

zahl > maximum
T F

maximum = zahl %]

Ruckgabe (return) von maximum

Die drei Grundstrukturen
Jeder Algorithmus besteht aus drei Grundelementen:

1. Sequenz: Anweisungen nacheinander
2. Verzweigung: Fallunterscheidung (if/else)
3. Wiederholung: Schleifen (for/while)

Struktogramme stellen diese Strukturen grafisch dar.

Grundregel: Der Kasten
Jedes Struktogramm ist ein Rechteck

e Von oben nach unten lesen
e Jede Anweisung in einem horizontalen Streifen

e Kein ,,Springen* zwischen Késten

64

Programmieren — D. Straub Struktogramme

Programm

int-Variable x eingeben

x>0

T F

Ausgabe: positiv | Ausgabe: negativ

Struktur 1: Sequenz

Sequenz = Anweisungen nacheinander ausfithren

Beispiel in Python:

X =5

y =3

summe = X + y

print(summe)
Summe
X=5
y=3

summe=x+y

Ausgabe: summe

Struktur 2: Verzweigung (einfach)
Einfache Verzweigung = if ohne else

Beispiel in Python:

65

Programmieren — D. Straub

Struktogramme

x = int(input("Gib eine Zahl ein: "))
if x > 0:

print("positiv")

Programm

int-Variable x eingeben

x>0

T F

Ausgabe: positiv | 9

Wichtig: Die Bedingung steht oben, der “Ja”-Zweig darunter

Struktur 2: Verzweigung (zweiseitig)
Zweiseitige Verzweigung = if-else

Beispiel in Python:
if x > 0:

print("positiv")
else:

print("nicht positiv")

66

Programmieren — D. Straub Struktogramme

Programm

int-Variable x eingeben

x>0

T F

Ausgabe: positiv | Ausgabe: nicht positiv

Beispiel: Gerade/Ungerade priifen

Python:

n = int(input("Gib eine Zzahl ein: "))
if n % 2 ==

print("gerade")
else:

print("ungerade")

Programm

int-Variable n eingeben

n%2==
T F

Ausgabe: gerade | Ausgabe: ungerade

Verschachtelte Verzweigungen

Python:

temp = float(input("Temperatur in °C: "))
if temp < 0:

print("Eis")
elif temp < 100:

67

Programmieren — D. Straub

Struktogramme

print("Wasser")
else:

print("Dampf")

Programm

float-Variable temp eingeben

temp <0
T F

Ausgabe: Eis temp <100
T F

Ausgabe: Wasser | Ausgabe: Dampf

Struktur 3: Wiederholung (for-Schleife)
Zahlschleife = for-Schleife mit festem Bereich

Beispiel in Python:

for i in range(1, 6):

print(i)

Programm

furi=1bis 5

Ausgabe: i

68

Programmieren — D. Straub

Struktogramme

Struktur 3: Wiederholung (while-Schleife)

Bedingungsschleife = while-Schleife

Beispiel in Python:

i=1

while i <= 5:
print(i)

i=1+1

Programm

solange i<=5

Ausgabe: i

inkrementiere i

Verschachtelte Strukturen

Strukturen konnen ineinander verschachtelt werden.

Beispiel: Verzweigung in einer Schleife

Python:

for i in range(1, 6):
if 1 % 2 ==
print(f"{i} ist gerade")
else:

print(f"{i} ist ungerade")

69

Programmieren — D. Straub Struktogramme

Programm
fori=1to5
i%2==
T F
Ausgabe: Ausgabe:
{i} ist gerade | {i}ist ungerade

Vollstandiges Beispiel: Maximum finden

Python:

def finde_maximum(liste):
maximum = liste[0]
for zahl in liste:

if zahl > maximum:

maximum = zahl

return maximum

Funktion finde_maximum(liste)

maximum = liste[0]

fur jedes zahl in liste

zahl > maximum

T F

maximum = zahl %]

Ruckgabe (return) von maximum

70

Programmieren — D. Straub Struktogramme

Gruppenarbeit

Aufgabe: Erstellen Sie ein Struktogramm fiir folgende Funktion aus dem letzten Praktikum:

def ist_prim(zahl):
"""Gibt aus, ob “zahl eine Primzahl ist."""
if zahl ==
return False
for teiler in range(2, zahl):
if zahl % teiler ==
return False
if teiler*+2 > zahl:
break

return True

Zusammenfassung
Pseudocode:

o Werkzeug zum Planen: Erst denken, dann coden!
o Keine festen Regeln, aber strukturiert

o Hilft, die Logik zu kldren
Struktogramme:

e Grafische Darstellung von Algorithmen
e Drei Grundstrukturen: Sequenz, Verzweigung, Wiederholung

¢ Nassi-Shneiderman-Notation

71

Programmieren — D. Straub Arbeiten mit Zeichenketten

Arbeiten mit Zeichenketten

Uberblick: Strings in der Praxis

Wiederholung aus Kapitel 2:

e Strings mit "...", '..."' oder

erstellen
o f-Strings fiir Formatierung: f"{variable}", f"{wert:.2f}"
e Unicode-Unterstiitzung "", Escape Sequences "\n", "\t", "\\", "\"", "\'"

Heute: 1. String-Indizierung & Slicing (Zugriff auf Teile) 2. String-Methoden (Bearbeitung &

Analyse) 3. Praxisanwendungen: Validierung, Textverarbeitung, Verschliisselung

Wiederholung: Strings sind Sequenzen

Strings sind unverianderbare Sequenzen von Zeichen — man kann auf einzelne Zeichen

zugreifen.

text = "Python"

print(f"Lange: {len(text)}")
print(f"Erstes Zeichen: {text[0]}")
print(f"Letztes Zeichen: {text[-1]}")

Strings sind unveranderbar!

text = "Python"

text[0] = "J" # TypeError!

Stattdessen: neuen String erzeugen
text = "J" + text[1:]

print(text)

String-Indizierung: Positive und negative Indizes

wort = "Python"
012345 (positive Indizes)
-6-5-4-3-2-1 (negative Indizes)

print(wort[0]) # P
print(wort[5]) #n

72

Programmieren — D. Straub Arbeiten mit Zeichenketten

print(wort[-1]) # n (letztes Zeichen)
print(wort[-2]) # o (vorletztes Zeichen)

Merke: Negative Indizes zahlen von hinten — genau wie in Listen!

String-Iteration: Zeichen durchlaufen

Mit for-Schleife durch String iterieren
for zeichen in "Python":

print(zeichen)

Mit Index und enumerate()
for i, zeichen in enumerate("Python"):

print(f"Index {i}: {zeichen}")

String-Slicing: Teilstrings extrahieren

Syntax: string[start:stop:step] — alle drei Teile optional. Genau wie bei Listen!

alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

print(alphabet[0:5]) # ABCDE

print(alphabet[5:10]) # FGHIJ

print(alphabet[:5]) # ABCDE (start fehlt = 0)
print(alphabet[20:]) # UVWXYZ (stop fehlt = Ende)
print(alphabet[::2]) # ACEGIKMOQSUWY (jedes 2. Zeichen)
print(alphabet[::-1]) # Umkehrung!

Slicing-Beispiel: String umkehren

nachricht = "Hallo Welt"
umgekehrt = nachricht[::-1]
print(umgekehrt)

Praktische Anwendung: Palindrom-Check

73

Programmieren — D. Straub

Arbeiten mit Zeichenketten

def ist_palindrom(text):

text text.lower() # wandle

text[::-1]

return text
print(ist_palindrom("Anna"))

print(ist_palindrom("Lagerregal"))
print(ist_palindrom("Hallo"))

Wichtige String-Methoden: Ubersicht

in Kleinbuchstaben um — Details im nachsten Abschnitt

Methode

Beschreibung

upper(), lower()

strip(), lstrip(), rstrip()

split(), join()
replace()

startswith(), endswith()

find(), count()

isdigit(), isalpha()

GroB-/Kleinschreibung
Whitespace entfernen
Trennen und Verbinden
Text ersetzen
Prafix/Suffix priifen
Suchen und Z&hlen

Zeichentyp prifen

GrofB- und Kleinschreibung

text = "Python Programmierung"

print(text.upper()) # PYTHON

print(text.lower()) # python
print(text.capitalize()) # Python

print(text.title()) # Python

Case-insensitiver Vergleich

emailil

email2

print(emaill.lower()

PROGRAMMIERUNG
programmierung
programmierung

Programmierung

"Max.MustermannaGmail.COM"
"max.mustermannagmail.com"

email2.lower())

74

Programmieren — D. Straub Arbeiten mit Zeichenketten

Sonderfall: 8 und casefold()

Problem: lower() wandelt nur in Kleinbuchstaben um, entfernt aber nicht alle

Fallunterscheidungen

Beispiel: Deutsches B

print("StraBe".upper()) # STRASSE (B > SS)

print("STRASSE".lower()) # strasse (SS > ss)

print("Strake".lower()) # strale (R bleibt R)

print("StraBe".lower() == "STRASSE".lower()) # False (straRe # strasse)

casefold() ist aggressiver: entfernt alle Fallunterscheidungen (z.B. 8 — ss)

print("Stralke".casefold()) # strasse
print("STRASSE".casefold()) # strasse
print("StraRe".casefold() == "STRASSE".casefold()) # True

Faustregel: Fiir case-insensitive Vergleiche immer casefold() verwenden! ### Whitespace

entfernen

strip() entfernt Leerzeichen, Tabs, Newlines am Anfang/Ende
eingabe = " Hallo Welt \n"

print(f"'{eingabe}'")

print(f"'{eingabe.strip()}'")

strip() kann auch andere Zeichen entfernen
url = "https://example.com/"
print(url.strip("/")) # https://example.com (nur / wird entfernt)

Ustrip() und rstrip() fir links/rechts
pfad = "///home/user/file.txt"
print(pfad.lstrip("/")) # home/user/file.txt

Split und Join: Text zerlegen und zusammenfiigen
split() zerlegt String in Liste
satz = "Python ist eine tolle Sprache"

woerter = satz.split()

print(woerter)

()

Programmieren — D. Straub Arbeiten mit Zeichenketten

Mit Trennzeichen
csv_zeile = "Max,Mustermann,25,Berlin”
daten = csv_zeile.split(",")

print(daten)

join() filgt Liste zu String zusammen
woerter = ["Python", "ist", "toll"]

satz = ".join(woerter)

print(satz)

Split/Join Anwendung: Worter umkehren

def umgekehrte_woerter(satz):

Kehrt die Reihenfolge der Worter um.
woerter = satz.split()

return ".join(reversed(woerter))
satz = "Hallo Welt wie geht es dir"

print(umgekehrte_woerter(satz))

Text ersetzen

Datenpfade normalisieren

pfad = "C:\\Users\\David\\Documents\\data.txt"
unix_pfad = pfad.replace("\\", "/")
print(unix_pfad)

#t Telefonnummern normalisieren
telefon = "+49 (89) 123-456"

normalisiert = telefon.replace(" ",).replace("(",).replace(")",

print(normalisiert)

URL-Parameter entfernen
url = "https://example.com/seite.html?ref=123&utm=abc"
saubere_url = url.split("?")[0]

print(saubere_url)

76

).replace("-", "")

Programmieren — D. Straub Arbeiten mit Zeichenketten

Prafix und Suffix priifen

dateiname = "bericht_2025.pdf"

if dateiname.endswith(".pdf"):
print("PDF-Datei gefunden")

url = "https://www.example.com"

if url.startswith("https://"):
print("Sichere Verbindung")
elif url.startswith("http://"):

print("Unsichere Verbindung")

Mehrere Moglichkeiten priifen (Tupel!)

bild = "foto.jpg"

if bild.endswith((".jpg", ".png", ".gif")):
print("Bilddatei")

Suchen in Strings

Textanalyse: Finde Position eines Keywords in einem Artikel

artikel = Machine Learning revolutioniert die Industrie.

Deep Learning ermoglicht neue Anwendungen.

find() gibt Index zuriick (oder -1 wenn nicht gefunden)
pos = artikel.find("Learning")

print(f"Erste Position von 'Learning': {pos}")

count() zahlt Vorkommen - praktisch fiir Keyword-Analyse
anzahl = artikel.count("Learning")

print(f"'Learning' kommt {anzahl}x vor")

Praktisches Beispiel: Priife ob API-Response erfolgreich war
response = '{"status": "success", "data": {...}}'

if response.find('"status": "success"') != -1:

print("API-Aufruf erfolgreich")

7

Programmieren — D. Straub Arbeiten mit Zeichenketten

Zeichentyp priifen

Verschiedene isx-Methoden

print("123".isdigit()) # True
print("12.3".isdigit()) # False (Punkt ist keine Zziffer!)
print("abc".isalpha()) # True

print("abc123".isalnum()) # True (Buchstaben oder Ziffern)

print(" ".isspace()) # True

Praktisch fir Validierung

alter = input("Alter: ")

if alter.isdigit():
print(f"Alter: {int(alter)}")

else:

print("Ungiiltige Eingabe")

Anwendung: E-Mail-Validierung (vereinfacht)

def ist_gueltige_email(email):
"""Einfache E-Mail-Validierung (nicht vollstandig!)."""
Grundlegende Checks
if email.count("@") !'= 1:

return False
lokaler_teil, domain = email.split("@")
Lokaler Teil und Domain diirfen nicht leer sein
if not lokaler_teil or not domain:
return False
Domain muss einen Punkt enthalten
if "." not in domain:

return False

Domain-Endung muss mindestens 2 Zeichen haben

endung = domain.split(".")[-1]

78

Programmieren — D. Straub Arbeiten mit Zeichenketten

if len(endung) < 2:

return False
return True

Tests
print(ist_gueltige_email("max@example.com"))
print(ist_gueltige_email("maxaexample"))

print(ist_gueltige_email("max.com"))

Anwendung: Dateinamen verarbeiten

def parse_dateiname(pfad):
"""Extrahiert Informationen aus einem Dateipfad."""
Letzten Teil des Pfads nehmen (Dateiname)

dateiname = pfad.split("/")[-1]

Name und Erweiterung trennen

if "." in dateiname:

name, erweiterung = dateiname.rsplit(".", 1)
else:

name, erweiterung = dateiname, ""

return {
"pfad": pfad,
"dateiname": dateiname,
"name": name,

"erweiterung": erweiterung

info = parse_dateiname("/home/user/dokumente/bericht_2025.pdf")

print(info)

79

Programmieren — D. Straub

Arbeiten mit Zeichenketten

String-Methoden verketten

Methoden konnen verkettet werden

text = " Python Programmierung

Mehrere Operationen hintereinander

ergebnis = text.strip().lower().replace(" ", "_")

print(ergebnis)

Praktisch fir Datenbereinigung

email = " Max.MustermannaGMAIL.COM "

sauber = email.strip().lower()

print(sauber)

f-Strings: Formatierungsmoglichkeiten

Format Bedeutung Beispiel Ergebnis

2f FlieSBkommazahl mit 2 f*{3.14159:.2f}" 3.14
Nachkommastellen

.0f FlieBkommazahl ohne f"{3.14159:.0f}" 3
Nachkommastellen

d Ganzzahl (Integer) f{42:d}" 42

>10 Rechtsbiindig, Breite 10 fr{42:>10}" 42

<10 Linksbiindig, Breite 10 f*{'Hi':<10}" Hi

10 Zentriert, Breite 10 fU{'Hi':"10}" Hi

05d Mit Nullen auffiillen, f'{42:05d}" 00042
Breite 5

, Tausendertrennzeichen f"{1000000:,}" 1,000,000

.2% Prozent mit 2 f"{0.1234:.2%}" 12.34%

Nachkommastellen

f-Strings: Tabellen formatieren

Anwendung fiir tabellarische Ausgaben:

80

Programmieren — D. Straub Arbeiten mit Zeichenketten

studenten = [
("Alice", 23, 1.7),
("Bob", 25, 2.3),
("Charlie", 22, 1.9)

Header
print(f"{'Name':<10} {'Alter':>5} {'Note':>5}")
print("-" % 25)

Daten
for name, alter, note in studenten:
print(f"{name:<10} {alter:>5} {note:>5.1f}")

Caesar-Verschliisselung: Einfithrung

Historischer Kontext:

» Von Julius Caesar verwendet (100-44 v. Chr.)
o FKinfache Substitutions-Verschliisselung

e Jeder Buchstabe wird um n Positionen verschoben
Beispiel (Verschiebung = 3):

ABCDEFG... XYZ
R I 2 R 2 N2
DEFGHIJ... ABC

Klartext: HALLO Geheimtext: KDOOR

81

Programmieren — D. Straub Arbeiten mit Zeichenketten

Caesar-Verschliisselung: Algorithmus

Idee: 1. Fiir jeden Buchstaben: - Finde Position im Alphabet (A=0, B=1, ..., Z=25) - Addiere
Verschiebung - Rechne Modulo 26 (zuriick zum Anfang bei Uberlauf) - Wandle zuriick in
Buchstaben

Beispiel (Verschiebung = 3):

¢ H — Position 7 — 7+3=10 — K
e A — Position 0 — 0+3=3 — D
e L. — Position 11 — 114+3=14 — O ##+# Aufgabe: Caesar-Verschliisselung implementieren

Teil 1: Verschliisselung
Schreibe eine Funktion caesar_verschluesseln(text, verschiebung), die einen Text

verschliisselt.

82

Programmieren — D. Straub Arbeiten mit Zeichenketten

Anforderungen:

e Wandle Text in Grofibuchstaben um
o Verschiebe jeden Buchstaben um verschiebung Positionen
o Verwende Modulo 26 fiir Uberlauf (Z+1 = A)

¢ Nicht-Buchstaben bleiben unverandert
Beispiel:

print(caesar_verschluesseln("HALLO WELT", 3)) # KDOOR ZHOW

Hinweise: alphabet.find(zeichen) fiir Position, text.upper() fiir Grobuchstaben

Aufgabe: Caesar-Entschliisselung
Teil 2: Entschliisselung

Schreibe eine Funktion caesar_entschluesseln(text, verschiebung), die einen

Caesar-verschliisselten Text entschliisselt.

Tipp: Uberlege, wie Entschliisselung und Verschliisselung zusammenhéngen! - Verschiebung um

+3 verschliisselt - Verschiebung um -3 entschliisselt

Beispiel:

geheimtext = "KDOOR ZHOW"
klartext = caesar_entschluesseln(geheimtext, 3)
print(klartext) # HALLO WELT

Aufgabe: Brute-Force-Angriff
Teil 3: Alle Schliissel ausprobieren

Schreibe eine Funktion caesar_brechen(geheimtext), die alle 26 moglichen Verschiebungen

ausprobiert.
Anforderungen:

e Probiere Verschiebungen von 0 bis 25
e Gib fiir jede Verschiebung das Ergebnis aus
e Format: "Verschiebung 3: HALLO WELT"

Erkenntnis: Caesar-Verschliisselung ist unsicher — nur 26 mogliche Schliissel!

83

Programmieren — D. Straub Arbeiten mit Zeichenketten

Zusammenfassung: Arbeiten mit Zeichenketten
String-Grundlagen:

o Indizierung, Slicing, Iteration

e Strings sind unverdnderbar
Wichtige Methoden:

o GroB-/Kleinschreibung: upper(), lower()

o Bereinigung: strip(), replace()

o Zerlegen/Verbinden: split(), join()

e Suchen: find(), count(), startswith(), endswith()
e Priifen: isdigit(), isalpha(), etc.

Reverse Words: Worter eines Satzes umkehren

Gegeben ist ein Satz — kehre die Reihenfolge der Worter um.

satz = "Leise rieselt der Schnee"

Ziel:

"Schnee der rieselt Leise"

Hinweise:

o Satz in Worter zerlegen
e Reihenfolge umkehren

o Worter wieder zusammensetzen

84

Programmieren — D. Straub Visualisierung von Funktionen

Visualisierung von Funktionen

Was ist matplotlib?
matplotlib ist die Standard-Bibliothek fiir Datenvisualisierung in Python.
Hauptmerkmale:

o Erstellen von Plots, Diagrammen, Grafiken
o Publikationsreife Qualitéit

e Hochgradig anpassbar

o Integration mit NumPy

e Open Source

Installation: pip install matplotlib

matpltlib

Beispiele

pyplot: Die zentrale Schnittstelle

pyplot ist das Hauptmodul fiir die Erstellung von Plots — &hnlich wie MATLAB.

import matplotlib.pyplot as plt

Einfachster Plot
plt.plot([1, 2, 3, 4])
plt.show()

Konvention: Import als plt

Mehr zu plt.show()

In Python-Skripten (Terminal):

e plt.show() ist erforderlich

o Offnet den Plot in einem neuen Fenster

85

https://matplotlib.org/stable/plot_types/index.html

Programmieren — D. Straub

Visualisierung von Funktionen

e Programm wartet, bis Fenster geschlossen wird
In Jupyter Notebooks:

e plt.show() ist nicht notig

e Plots werden automatisch angezeigt

Erster einfacher Plot

Ein Plot zeigt die Beziehung zwischen x- und y-Werten.

import matplotlib.pyplot as plt

= [01 1, 2, 3, 4]
[0, 1, 4, 9, 16]

x
1

<
]

plt.plot(x, vy)
plt.show()

Titel und Achsenbeschriftungen

Mit title(), xlabel() und ylabel() wird der Plot beschriftet.

import matplotlib.pyplot as plt

= [01 1, 2, 3, 4, 5]
[0, 1, 4, 9, 16, 25]

X
1

<
]

plt.plot(x, vy)
plt.title("Quadratfunktion")
plt.xlabel("x-Werte")
plt.ylabel("y-Werte")
plt.show()

Gitter hinzufiigen

Mit grid() wird ein Gitter zum besseren Ablesen angezeigt.

86

Programmieren — D. Straub

Visualisierung von Funktionen

import matplotlib.pyplot as plt

x
]

plt.
plt.
plt.
plt.
plt.
plt.

(e, 1, 2, 3, 4, 5]
[0, 1, 4, 9, 16, 25]

plot(x, vy)
title("Quadratfunktion")
xlabel("x"

ylabel("y")

grid(True)

show()

Mehrere Linien in einem Plot

Mehrere plot()-Aufrufe zeichnen mehrere Linien in denselben Plot.

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]

yl
y2

plt.
plt.
plt.
plt.
plt.
plt.
plt.

(e, 1, 4, 9, 16, 25]
(o, 2, 8, 18, 32, 50]

plot(x, y1)

plot(x, y2)

title("Zwei Funktionen")
xlabel("x"

ylabel("y")

grid(True)

show()

Linien-Stile

Mit dem dritten Parameter kénnen verschiedene Linien-Stile gewahlt werden.

import matplotlib.pyplot as plt

X =

(e, 1, 2, 3, 4, 5]

87

Programmieren — D. Straub Visualisierung von Funktionen

y = [0, 1, 4, 9, 16, 25]

plt.plot(x, y, "--") # Gestrichelte Linie
plt.title("Gestrichelte Linie")
plt.xlabel("x")

plt.ylabel("y")

plt.grid(True)

plt.show()

Wichtige Stile: "-" (durchgezogen), "--" (gestrichelt), "-." (Strich-Punkt), ":" (gepunktet)

Marker-Stile: Punkte anzeigen

Mit Markern werden die Datenpunkte sichtbar gemacht.

import matplotlib.pyplot as plt

x
]

[o, 1, 2, 3, 4, 5]
y = [0, 1, 4, 9, 16, 25]

plt.plot(x, y, "o") # Nur Kreise, keine Linie
plt.title("Datenpunkte")

plt.xlabel("x"

plt.ylabel("y")

plt.grid(True)

plt.show()

Wichtige Marker: "o" (Kreis), "s" (Quadrat), """ (Dreieck), "*" (Stern), "+" (Plus), "x"
(Kreuz)

Linien und Marker kombinieren
Linien-Stil und Marker konnen kombiniert werden.

import matplotlib.pyplot as plt

(e, 1, 2, 3, 4, 5]
(e, 1, 4, 9, 16, 25]

x
]

<
]|

88

Programmieren — D. Straub Visualisierung von Funktionen

plt.plot(x, y, "o-") # Kreise verbunden mit Linie
plt.title("Linie mit Markern")

plt.xlabel("x"

plt.ylabel("y")

plt.grid(True)

plt.show()

Farben festlegen

Farben kénnen mit Buchstaben oder Namen angegeben werden.

import matplotlib.pyplot as plt

X = [01 1, 2, 3, 4, 5]
vyl = [0, 1, &, 9, 16, 25]
y2 = [0, 2, 8, 18, 32, 50]

plt.plot(x, y1, "r-" # Rot, durchgezogen
plt.plot(x, y2, "b--") # Blau, gestrichelt
plt.title("Farbige Linien")

plt.xlabel("x")

plt.ylabel("y")

plt.grid(True)

plt.show()

Wichtige Farbcodes: "r" (rot), "g" (grin), "b" (blau), "c" (cyan), "m" (magenta), "y" (gelb),

"k" (schwarz)

Farben mit Namen

Farben kénnen auch mit vollstdndigen Namen angegeben werden.

import matplotlib.pyplot as plt

x
1

= [0, 1, 2, 3, 4]
[Oy 11 41 91 16]

<
I

89

Programmieren — D. Straub Visualisierung von Funktionen

plt.plot(x, y, color="orange", linestyle= , marker="o0")
plt.title("Orangene Linie")

plt.xlabel("x"

plt.ylabel("y")

plt.grid(True)

plt.show()

Beispiele: "orange", "purple”, "brown", "pink", "gray"

Stil-String kompakt

Farbe, Linien-Stil und Marker kdnnen in einem String kombiniert werden.

import matplotlib.pyplot as plt

X = [01 1, 2, 3, 4, 5]
yl = [0, 1, 4, 9, 16, 25]
y2 = [0, 2, 8, 18, 32, 50]

plt.plot(x, y1, "ro-" # Rot, Kreise, durchgezogen
plt.plot(x, y2, "bs--") # Blau, Quadrate, gestrichelt
plt.title("Kombinierte Stile")

plt.xlabel("x")

plt.ylabel("y")

plt.grid(True)

plt.show()

Format: "[farbe][marker][linie]", z.B. "ro-", "gs--", "b":"

90

Programmieren — D. Straub List Comprehensions

List Comprehensions

Was sind List Comprehensions?
Kompakte Syntax zum Erstellen von Listen aus bestehenden Sequenzen.

Vergleich:

Mit for-Schleife:

quadrate = []

for x in range(5):
quadrate.append(x #** 2)

print(quadrate)

Mit List Comprehension:
quadrate = [x ** 2 for x in range(5)]

print(quadrate)

Viel kiirzer und lesbarer!

Grundstruktur

Syntax:

neue_liste = [ausdruck for element in sequenz]

Weitere Beispiele:

Buchstaben aus String extrahieren
buchstaben = [zeichen for zeichen in "Python"]

print(buchstaben)

Celsius zu Fahrenheit
celsius = [0, 10, 20, 30]
fahrenheit = [c * 9/5 + 32 for ¢ in celsius]

print(fahrenheit)

Wann List Comprehensions verwenden?

Vorteile:

91

Programmieren — D. Straub List Comprehensions

o Kompakter und lesbarer Code
Verwenden fiir:

¢ FEinfache Transformationen

o Abbildungen (mapping)
Vermeiden wenn:

e 7Zu komplex
o Nebeneffekte notig (z.B. print())
e Mehrere Schritte pro Element

Faustregel: Wenn die Comprehension mehr als eine Zeile braucht, verwende eine normale
Schleife!

List Comprehensions fiir Datenreihen
Wozu sind List Comprehensions niitzlich beim Plotten?

Beim Erstellen von Plots brauchen wir oft Datenreihen (x- und y-Werte).

x-Werte von 0 bis 10 in 0.5er-Schritten
x = [i % 0.5 for i in range(21)]
print(x) # [0.0, 0.5, 1.0, 1.5, ..., 10.0]

y-Werte als Quadrate der x-Werte
y = [xi #* 2 for xi in x]

print(y) # [0.0, 0.25, 1.0, 2.25, ..., 100.0]

Vorteil: Kompakt, lesbar und schnell!

Funktionen plotten: Vollstandiges Beispiel

Mit List Comprehensions kénnen wir elegant mathematische Funktionen plotten.

import matplotlib.pyplot as plt

x-Werte generieren
x = [1 % 0.1 for i in range(101)] # 0.0 bis 10.0 in 0.ler-Schritten

y-Werte mit Funktion berechnen

92

Programmieren — D. Straub List Comprehensions

def f(x):

return x %% 2

y = [f(xi) for xi in x] # Mapping: Funktion auf jedes x anwenden

Plotten

plt.plot(x, y, 'b-')
plt.title("Funktion f(x) = x2")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.grid(True)

plt.show()

Anwendung: Flugbahn darstellen
Darstellung einer Wurfparabel mit berechneten Werten.

import matplotlib.pyplot as plt

Flugbahn berechnen (vereinfacht)

t_werte = [i * 0.5 for i in range(11)] # Zeit in Sekunden

X_werte [t » 50 for t in t_werte] # Horizontale Distanz

y_werte [t * 30 - 5 % t**2 for t in t_werte] # Hohe

plt.plot(x_werte, y_werte, 'b-0')
plt.title("Flugbahn eines geworfenen Balls")
plt.xlabel("Distanz (m)")

plt.ylabel("Hohe (m)")

plt.grid(True)

plt.show()

Besondere Punkte hervorheben
Wie hebt man einzelne Punkte hervor?

Einfach einen zweiten plot()-Aufruf mit nur den speziellen Punkten:

93

Programmieren — D. Straub List Comprehensions

Funktion als Linie

plt.plot(x, vy, 'b-', label='Funktion')

Spezielle Punkte als Marker

plt.plot([x1, x2]1, [y1, y2], 'ro', markersize=10, label='Nullstellen')

Wichtig:

o Zweiter plot()-Aufruf mit nur den Punktkoordinaten
o Groflere Marker mit markersize Parameter

e Andere Farbe zur Unterscheidung ### Aufgabe: Funktionen visualisieren
Erstellen Sie einen Plot mit drei mathematischen Funktionen fiir x-Werte von 0 bis 10.
Funktionen: 1. Linear: f(z) = 2z 2. Quadratisch: g(z) = 2% 3. Kubisch: h(z) = 0.123
Anforderungen:

e Verwenden Sie List Comprehensions fiir die y-Werte
e Verschiedene Farben und Linien-Stile
o Titel und Achsenbeschriftungen

e Gitter aktivieren

Zusatzaufgabe: Nullstellen markieren
Plotten Sie die Funktion f(z) = 2% — 4 fiir x-Werte von -3 bis 3.

Aufgaben: 1. Plotten Sie die Funktion als blaue durchgezogene Linie 2. Markieren Sie die
beiden Nullstellen (z = —2 und = = 2) als grofle rote Punkte 3. Fiigen Sie eine Legende hinzu 4.
Vergessen Sie nicht Titel, Achsenbeschriftungen und Gitter

Tipp: Die Nullstellen liegen bei y = 0!

Zusammenfassung: matplotlib-Grundlagen
Wichtigste Funktionen:

e plt.plot(x, y) — Linie zeichnen

e plt.title() — Titel setzen

e plt.xlabel(), plt.ylabel() — Achsen beschriften
o plt.grid() — Gitter anzeigen

94

Programmieren — D. Straub List Comprehensions

o plt.show() — Plot anzeigen

Stile:

e Linien: '-', "--", "-.",

1 1 1 1A 1 1 1 1 1 1

e Marker: '0', 's"', T

e Farben: 'r', 'g', 'b', 'c', 'm', 'y', "k' oder Namen

Kombination: 'ro-' = rot, Kreise, durchgezogen

95

Programmieren — D. Straub Zahlensysteme

Zahlensysteme

Uberblick: Zahlensysteme
Warum ist dieses Thema wichtig?

o Computer arbeiten intern mit Bindrzahlen (0 und 1)
e Verstdndnis der Zahlenreprésentation erleichtert Programmieren und Fehlersuche

o Beeinflusst Speicherbedarf, Rechengeschwindigkeit und Effizienz von Programmen
Themen:

1. Bits und Bytes

2. Dezimal-, Binér-, Hexadezimalsystem
3. Umrechnung zwischen Zahlensystemen
4

. Gleitkommazahlen

Bits und Bytes: Grundlagen

Bit (Binary Digit) — kleinste Informationseinheit - Kann nur zwei Zustdnde annehmen: 0 oder 1 -

Physikalisch: Strom an/aus, magnetisch nord/siid, etc.

Byte — Gruppe von 8 Bits - Standard-Einheit fiir Speicher und Daten - Ein Byte kann 2% = 256
verschiedene Werte darstellen (0-255)

Beispiel:

1 Bit: 0 oder 1
1 Byte: 10110101 (8 Bits zusammen)

Warum Bits und Bytes?

Historische Entwicklung:

o Frithe Computer: verschiedene Wortgroen (4, 6, 7 Bits)
« 8-Bit-Byte setzte sich als Standard durch
o Praktisch fiir Zeichenkodierung (ASCII: 7 Bit, erweitert 8 Bit)

Moderne Bedeutung:

e Prozessoren arbeiten mit Wortgrofien von 32 oder 64 Bit

96

Programmieren — D. Straub Zahlensysteme

e Speicher wird in Bytes adressiert

e Datentypen haben feste Grofien in Bytes:
— int in Python: variabel
— 1int32 in NumPy: 4 Bytes = 32 Bits
— float64: 8 Bytes = 64 Bits

7-Bit-ASCII

ASCII TABLE

Decimal Hexadecimal Binary Octal Char Decimal Hexadecimal Binary Octal Char | Decimal Hexadecinal Binary Octal Char
[0 0 110000 60 O 60 1100000 140
1 1 31 110001 61 1 97 61 1100001 141 a
2 2 32 110010 62 2 98 62 1100010 142 b
3 3 33 110011 63 3 99 63 1100011 143 ¢
4 a 34 110100 64 4 00 64 1100100 144 d
5 5 35 110101 65 5 01 65 1100101 145 e
6 6 36 110110 66 6 102 66 1100110 146 f
7 7 37 10111 67 7 103 67 1100111 147 g
8 8 38 111000 70 8 04 68 1101000 150 h
9 9 39 111000 71 9 105 69 1101001 151 i
10 A E 111010 72 106 6A 1101010 152§
1 B 38 monn 73 ; 107 68 1101011 153 k
12 c 3c 111100 74 < 108 6C 1101100 154 1
13 D 30 o 75 = 109 6D 1101101 155 m
14 E 3E 11110 76 > 10 6 1101110 156 n
15 F 3F un1 77 2 m 6 1101111 157 o
16 10 a0 1000000100 @ |12 70 1110000 160 p
17 11 a1 1000001101 A FEERN it 1110001 161 q
18 12 a2 1000010 102 B w7 1110010 162
19 13 a3 1000011103 € us 73 1110011 163 s
20 14 44 1000100 104 D 16 74 1110100 164 ¢t
21 15 a5 1000101105 E 7 7 1110101 165 u
22 16 46 1000120 106 F 18 76 1110110 166 v
23 17 47 1000111107 G 19 77 1110111 167w
2 18 8 1001000 110 H 120 78 1111000 170 x
25 19 49 1001001111 1 21 7 1111001 171y
26 18 A 1001010 112 J 122 7A 1111000 172 z
27 18 a8 1001011113 K 123 78 1111011 173 {
28 1c ac 1001100114 L 124 7C 1111100 174 |
29 10 D 1001101115 M 125 7D 1111101 175}
30 1E 4 100110116 N 126 7E 1111110 176 ~
31 1F 4F 1001111117 © 2 1111111 177 [DEL]
32 20 50 1010000 120 P

33 21 51 1010001121 Q

E 22 52 1010010 122 R

35 23 53 1010011123 S

36 2 54 1010100124 T

37 25 55 1010101125 U

38 26 56 1010120126 V.

39 27 57 1010111127 W

a0 28 58 1011000 130 X

a1 29 59 1012001131 ¥

a2 24 5A 1011010132z

a3 28 E 1011011133 [

a4 2 5C 1011100134\

s 20 50 1011101135]

46 2 s 1011120136~

a7 2 5F 1011111 137

Was kann man mit n Bits darstellen?

Mit n Bits konnen 2™ verschiedene Werte dargestellt werden.

Bits Anzahl Werte Bereich (vorzeichenlos) Beispiel

2 0-1 Boolesche Werte

4 16 0-15 Hexadezimal-
Ziffer

8 256 0-255 1 Byte,
ASCII-Zeichen

16 65.536 0-65.535 uintl16

32 ~4,3 Mrd. 0-4.294.967.295 uint32, IPv4

64 ~18 Trillionen 0204 —1 uint6s

Merke: Jedes zusétzliche Bit verdoppelt die Anzahl méglicher Werte!

97

Programmieren — D. Straub Zahlensysteme

Vorzeichenbehaftete Zahlen
Problem: Wie stellt man negative Zahlen dar?

Losung: Ein Bit wird fiir das Vorzeichen verwendet

Wertebereich:

Bits Vorzeichenlos Mit Vorzeichen

8 0-255 -128 bis 127
16 0-65.535 -32.768 bis 32.767
32 0—4,3 Mrd. ~-2,1 Mrd. bis ~2,1 Mrd.

e Gleich viele darstellbare Zahlen, nur anders verteilt

o Nicht symmetrisch (z.B. -128 bis +127), weil es nur eine Null gibt

In Python: int hat unbegrenzte Gréfie — kein Uberlauf!

SI-Prafixe vs. Binarprafixe

Problem: Zwei verschiedene Systeme fiir Speichergrofien!

SI-Priifixe (Dezimal, Basis 10): - Kilo (k) = 103 = 1.000 - Mega (M) = 10° = 1.000.000 - Giga
(G) = 10% = 1.000.000.000 - Tera (T) = 102 = 1.000.000.000.000

Bin#rprifixe (IEC-Standard, Basis 2): - Kibi (Ki) = 20 = 1.024 - Mebi (Mi) = 220 = 1.048.576
- Gibi (Gi) = 230 = 1.073.741.824 - Tebi (Ti) = 20 = 1.099.511.627.776

Unterschied Sl vs. Binar: Praktische Auswirkung

Beispiel: 1 TB Festplatte

Hersteller rechnet (SI):
si_bytes = 1_000_000_000_000 # 1 TB = 1.000 GB

Betriebssystem rechnet (Binar):
gibibytes = si_bytes / (1024%%3)
print(f"1 TB = {gibibytes:.2f} GiB") # ~931 GiB

Deshalb: Eine “1 TB” Festplatte zeigt im Betriebssystem nur ~931 GB an!

98

Programmieren — D. Straub Zahlensysteme

Aktueller Standard:

o Festplatten-Hersteller: SI-Prifixe (Dezimal)
o Betriebssysteme: oft noch Binar, zeigen aber “GB” an

o IEC-Standard: KiB, MiB, GiB fiir Bindrprifixe (wird immer mehr verwendet)

Verwendung von Byte-Prafixen in Dateimanagern

Betriebssystem Einheit Basis Kommentar

Windows KB, MB, GB 1024 Binarpréfixe aber
ohne “i”

macOS KB, MB, GB 1000 SI-Préfixe aber mit
K fiir Kilo

Linux/KDE KiB, MiB, GiB 1024 ITEC-Prafixe
(korrekt)
einstellbar

Linux/Gnome KB, MB, GB 1000 SI-Prifixe, aber

mit K fir Kilo

Umrechnung: Beispiele

Wie viele Bytes sind 5 MiB?

mib = 5

bytes_wert = mib * 1024 * 1024

print(f"{mib} MiB = {bytes_wert:,} Bytes")

print(f"{mib} MiB = {bytes_wert / 1_000_000:.2f} MB (SI)")

RAM-GroBen sind typischerweise in Zweierpotenzen
ram_gb = 16 # "16 GB" RAM

ram_bytes = 16 % 1024*%*3 # Eigentlich GiB!
print(f"{ram_gb} GiB = {ram_bytes:,} Bytes")

print(f"{ram_gb} GiB = {ram_bytes / 1_000_000_000:.2f} GB (SI)")

Stellenwertsysteme: Grundidee

Ein Stellenwertsystem reprasentiert Zahlen durch Ziffern an verschiedenen Positionen.

99

Programmieren — D. Straub Zahlensysteme

Allgemeine Form:
Zahl=d, - b" +d, ;- b" ' +..+d; -b* +d,-b°

o b = Basis des Zahlensystems
e d; = Ziffer an Position 7 (von rechts, beginnend bei 0)

o Jede Position hat einen Stellenwert: b’

Wichtig: Die Ziffer d; muss kleiner als die Basis sein: 0 < d, < b

Dezimalsystem (Basis 10)

Unser Alltags-Zahlensystem

e Basis: b =10
o Ziffern: 0,1, 2,3,4,5,6,7,8,9

Beispiel: 5347

Position 3 2 1 0

Stellenwert 103 102 10f 109

1000 100 10
Ziffer 5 3 4 7
Wert 5000 300 40

5347,0=5-10% +3-10% +4-10* +7- 10°

Bindrsystem (Basis 2)
Die Sprache der Computer

e Basis: b=2
e Ziffern: 0, 1

Beispiel: 1011

Position 3 2 1 0

Stellenwert 23 22 21 20

100

Programmieren — D. Straub

Zahlensysteme

Position 3 2 1 0

8 4 2 1
Ziffer 1 1 1
‘Wert 8 0 2 1

1011, =1-2540-22+1-2' +1-2° =11,

Hexadezimalsystem (Basis 16)

Kompakte Darstellung fiir Bindrzahlen

e Basis: b=16
e Ziffern: 0,1,2,3,4,5,6,7,8 9 A, B,C,D,E, F
« A=10, B=11, C=12, D=13, E=14, F=15

Beispiel: 2F3

Position 2 1 0

Stellenwert 162 16! 16°

256 16 1
Ziffer 2 F (15) 3
Wert 512 240 3

2F3,5 =2-16% +15-16' +3-16° = 755,

Warum Hexadezimal?

4 Bit = 1 Hexadezimal-Ziffer — sehr praktisch!

Bindr Hex Dezimal Bindr Hex Dezimal
0000 O 0 1000 8

0001 1 1 1001 9

0010 2 2 1010 A 10

0011 3 3 1011 B 11

101

Programmieren — D. Straub Zahlensysteme

Bindar Hex Dezimal Binar Hex Dezimal
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

Beispiel: 11010110 (binédr) = D6 (hex) — viel kompakter! ### Zahlensysteme in Python

Python unterstiitzt verschiedene Zahlensysteme direkt:

Dezimal (Standard)
dezimal = 42

print(dezimal)

Binar (Prafix 0b)

binaer = 0b101010

print(binaer) # Ausgabe in Dezimal: 42
print(bin(dezimal)) # Umwandlung zu Bindr-String: '0b101010'

Hexadezimal (Prafix 0x)
hexadezimal = 0x2A
print(hexadezimal) # Ausgabe in Dezimal: &2

print(hex(dezimal)) # Umwandlung zu Hex-String: 'Ox2a'

Umrechnung in Python: Bindar/Hex - Dezimal

Mit int()-Funktion und Basis-Parameter:

Binar > Dezimal
binaer_string = "101010"
dezimal = int(binaer_string, 2)

print(dezimal) # 42

Hexadezimal > Dezimal
hex_string = "2A"
dezimal = int(hex_string, 16)

print(dezimal) # 42

102

Programmieren — D. Straub Zahlensysteme

Auch mit Prafixen moglich
print(int("0b101010", 2)) H 42
print(int("0x2A", 16)) # 42

Umrechnung: Beliebige Basis - Dezimal
Methode: Stellenwertsystem-Formel anwenden

Algorithmus: 1. Von rechts nach links durchgehen 2. Jede Ziffer mit ihrem Stellenwert
multiplizieren 3. Alle Werte addieren

Beispiel: 2F3,; — Dezimal

2 x 162 + 15 x 161 + 3 x 16° = 512 + 240 + 3 = 755

Umrechnung: Dezimal - Beliebige Basis
Methode: Wiederholte Division mit Rest
Beispiel: 42 — Binir

e 42+2=21 Rest 0
e 21+-2=10Rest 1
e 10+-2=5Rest 0
e 5+-2=2Rest 1
e 2+2=1Rest 0
e 1+-2=0Rest1

Ergebnis (von unten nach oben): 101010,

Umrechnung: Dezimal - Hexadezimal
Methode: Wiederholte Division mit Rest (wie bei Binér)

Beispiel: 755 — Hexadezimal

e 755+ 16 =47 Rest 3 — Ziffer: 3
o 47 +16 = 2 Rest 15 — Ziffer: F (15 = F)
e 216 =0 Rest 2 — Ziffer: 2

103

Programmieren — D. Straub Zahlensysteme

Ergebnis (von unten nach oben): 2F3,,

Probe: 2 x 162 + 15 x 161 + 3 x 16 = 512 + 240 + 3 = 755

Gruppenarbeit: CSS-Farbcode entschliisseln
Gegeben: Hex-Farbcode #FC5555

Aufgaben: 1. Wandle jede Hex-Ziffer einzeln in Dezimal um 2. Bestimme die RGB-Werte (Rot,
Griin, Blau) 3. Jeder Farbkanal hat einen Wert von 0-255 (additive Farbmischung)

Hinweis: CSS-Farbcodes: #RRGGBB - Erste 2 Ziffern = Rot - Mittlere 2 Ziffern = Griin - Letzte 2
Ziffern = Blau

Frage: Welche Farbe ergibt sich?

Zusatzaufgabe: #007CB0O

Umrechnung: Bindr <> Hexadezimal

Besonders einfach: 4 Binérziffern = 1 Hexadezimalziffer!

Bindr — Hex: Gruppiere je 4 Bits von rechts

Beispiel: 110101105 — Hex - 1101 = 13, = D - 0110 = 6,, = 6 - Ergebnis: D6
Hex — Binir: Jede Ziffer = 4 Bits

Beispiel: 2FA — Bindr - 2 = 0010, F = 1111, A = 1010 - Ergebnis: 1011111010

Alle 6 Umrechnungsfille: Ubersicht

Von — Nach Methode Python-Funktion
Dezimal — Binir Division mit Rest bin(x)

Dezimal — Hex Division mit Rest hex(x)

Binidr — Dezimal Stellenwertsystem int(x, 2)
Binir — Hex Uber Dezimal oder hex(int(x, 2))

4-Bit-Gruppen

Hex — Dezimal Stellenwertsystem int(x, 16)

104

Programmieren — D. Straub Zahlensysteme

Von — Nach Methode Python-Funktion

Hex — Binar Uber Dezimal oder bin(int(x, 16))
jede Ziffer — 4 Bits

Zwei Strategien: 1. Direkte Umrechnung: Binir Hex (4-Bit-Gruppen) 2. Uber Dezimal:
Alle anderen Félle

Gleitkommazahlen: Problem der Darstellung
Wie speichert der Computer Dezimalzahlen?
Problem:

o Ganzzahlen: exakte Darstellung mdoglich
e Dezimalzahlen: unendlich viele mégliche Werte zwischen zwei Ganzzahlen!

o Speicher ist begrenzt (32 oder 64 Bit)

Losung: Gleitkommazahlen (Floating Point) - Idee: Wissenschaftliche Notation im Binérsystem -
Speichere Vorzeichen, signifikante Stellen und Exponent - Ermoglicht sehr groie und sehr kleine

Zahlen mit begrenztem Speicher

Binarkommazahlen
Dezimalzahlen mit Nachkommastellen in Binar

Wie bei Ganzzahlen: Stellenwertsystem, aber mit negativen Exponenten!

Position 20 21 9272 923 24

Wert 1 05 0,25 0,125 0,0625

Beispiel: 0.11, in Dezimal

011, =1x214+1x22=05+0.25=0.75,,

Beispiel: 1.101, in Dezimal

1101, =1 x 22+ 1 x 27 4+ 0x22+1x273

105

Programmieren — D. Straub Zahlensysteme

=1+0.540.125 = 1.625,,

Umrechnung: Dezimalzahlen in Binar
Methode: Multiplikation mit Basis (statt Division)
Beispiel: 0.75,, in Binéar

e 0.75 x 2 =1.5 — Ziffer: 1, Rest: 0.5
e 0.5 x2=1.0— Ziffer: 1, Rest: 0.0

Probe: 0.11, =1x 271 +1x272=0.75

Problem: Nicht alle Dezimalzahlen haben endliche Binardarstellung! - 0.1,, = 0.00011,

(periodisch — unendlich viele Nachkommastellen!)

Beispiel: 0.1 im Binarsystem
Umrechnung 0.1,, — Binédr (Multiplikationsmethode):

e 0.1 x2=0.2 - Ganzzahlteil: 0, Rest: 0.2
e 0.2 x2=0.4 — Ganzzahlteil: 0, Rest: 0.4
e 0.4 x 2 =0.8 — Ganzzahlteil: 0, Rest: 0.8
e 0.8 x2=1.6 - Ganzzahlteil: 1, Rest: 0.6
e 0.6 x 2=1.2 - Ganzzahlteil: 1, Rest: 0.2
e 0.2 x2=0.4 - Wiederholt sich!

Ergebnis (von oben nach unten): 0.1,, = 0.00011, (periodisch)

Probe zuriick in Dezimal (erste Stellen):
0.00011001100110011..o = 0-272 +0-2240-23 +1-274 +1.275 4

= 0.0625 4+ 0.03125 + 0.0078125 + ... ~ 0.09999999...

Gleitkommazahlen: IEEE-754-Standard
Wie speichert der Computer Bindrkommazahlen?

64-Bit Double Precision (Python float):

106

Programmieren — D. Straub Zahlensysteme

Vorzeichen Exponent Mantisse

1 Bit 11 Bits 52 Bits

Format: +1.Mantisse x 2FxPonent (normalisierte Form)
Beispiel: 0.75

e Dezimal: 0.75,

e Binir: 0.11, = 1.1, x 27! (normalisiert)
» Vorzeichen: 0 (positiv)

e Exponent: -1

o Mantisse: 1 (fiihrende 1. ist implizit, nur .1 wird gespeichert)

Gleitkommazahlen: Grenzen der Genauigkeit

52-Bit-Mantisse 15-17 Dezimalstellen Genauigkeit

Erinnerung: Rundungsfehler!
print(0.1 + 0.1 + 0.1) # 0.30000000000000004
print(0.1 + 0.1 + 0.1 == 0.3) # False

Warum?

e 0.1;, hat unendlich viele Nachkommastellen im Bindrsystem!
e 0.1, = 0.00011, (periodisch)
e Wird nach 52 Bit abgeschnitten — Rundungsfehler

Fazit: Niemals Gleitkommazahlen mit == vergleichen!

Gleitkommazahlen: Spezielle Werte

IEEE 754 definiert spezielle Werte:

Unendlich (Division durch 0)
print(1.0 / 0.0) # inf
print(-1.0 / 0.0) # -inf

Not a Number (ungiiltige Operationen)
print(0.0 / 0.0) # nan

107

Programmieren — D. Straub Zahlensysteme

print(float('inf') - float('inf')) # nan

Testen

import math

x = float('inf")
print(math.isinf(x)) # True
y = float('nan')
print(math.isnan(y)) # True

Gleitkommazahlen: Extreme Werte
Wertebereich von float (64-Bit):

o GroBite Zahl: ca. 1.8 x 10308

« Kleinste positive Zahl: ca. 2.2 x 107308

e Préazision: ca. 15-17 Dezimalstellen

Uberlauf/Unterlauf:

print(1e308) # 1e+308
print(1e309) # inf (Uberlauf!)
print(le-324) # 5e-324
print(1e-325) # 0.0 (Unterlauf!)

Gleitkommazahlen: Best Practices

Vermeiden:

Direkte Gleichheitstests
if x == 0.3: # Gefahrlich!

Akkumulation kleiner Fehler
summe = 0.0
for i in range(1000000):

summe += 0.1 # Fehler akkumulieren sich!

108

Programmieren — D. Straub Zahlensysteme

Gleitkommazahlen: Best Practices

Besser:

Toleranz-basierter Vergleich
tolerance = 1le-9

if abs(x - 0.3) < tolerance:

Fur kritische Anwendungen: decimal-Modul
from decimal import Decimal

summe = Decimal('0.0")

for i in range(1000000):

summe += Decimal('0.1"') # Exakt!

Ubungsaufgaben: Zahlensysteme

Dateiberechtigungen (Unix/Linux) Die Oktalzahl 755 steht fiir Dateiberechtigungen:
rwxr-xr-x - Wandle 755 (Oktal) in Bindr um - Was bedeuten die 9 Bits? (3 Bit pro

Benutzergruppe: owner, group, others)

UTF-8 Emoji Das Emoji hat den Unicode U+1F525 (Hexadezimal) - Wandle 1F525 in Dezimal

um - Wie viele Werte kann Unicode maximal darstellen? (Hinweis: 10FFFF ist der hochste Wert)

109

Programmieren — D. Straub

Klassen

Klassen

Motivation: Warum Klassen?

Bisher: Variablen und Funktionen getrennt

signal_amplitude = 5.0
signal_frequenz = 50.0 # Hz
signal_phase = 0.0

def berechne_effektivwert(amplitude):
return amplitude / (2%%0.5)

print(f"Effektivwert: {berechne_effektivwert(signal_amplitude):.2f}")

Problem: Zusammengehorige Daten (Amplitude, Frequenz, Phase) und Funktionen sind

getrennt — uniibersichtlich bei vielen Signalen!

Was sind Klassen?
Klassen biindeln zusammengehorige Daten und Funktionen

o Eine Klasse ist eine benutzerdefinierte Datenstruktur mit zugehorigen Operationen
e Eine Instanz ist ein konkretes Objekt dieser Klasse
o Attribute sind die Daten (Variablen) einer Instanz

e« Methoden sind die Funktionen, die auf Instanzen operieren
Beispiel Signal:

e Klasse Signal: Definiert, was ein Signal ist und kann

o Instanz: Ein konkretes Signal mit Amplitude 5V, Frequenz 50Hz
o Attribute: amplitude, frequenz, phase

e Methoden: effektivwert(), abtasten()

Klassen haben wir bereits verwendet!

Alle Datentypen in Python sind Klassen:

110

Programmieren — D. Straub

Klassen

zahl 42
text "Hallo"
liste = [1, 2, 3]

print(type(zahl)) # <class 'int'>
print(type(text)) # <class 'str'>
print(type(liste)) # <class 'list'>

Methoden haben wir schon benutzt:

text.upper() # Methode der str-Klasse
liste.append(4) # Methode der list-Klasse

Jetzt lernen wir: Eigene Klassen definieren!

Wichtig: Klasse vs. Instanz

Wiederholung: Definition vs. Aufruf bei Funktionen

Definition: Legt fest, WAS die Funktion tut
def gruss(name):

return f"Hallo {name}"

Aufruf: BENUTZT die Funktion

nachricht = gruss("Anna")

Genauso bei Klassen:

o Klassendefinition: Legt fest, WAS ein Objekt kénnen soll

e Instanzerstellung: ERSTELLT ein konkretes Objekt

o Methodenaufruf: BENUTZT die Methode eines Objekts

Erste eigene Klasse: Signal

class Signal:

pass # Leere Klasse (fiirs Erste)

Instanz erstellen (= ein konkretes Signal-Objekt erzeugen)

signall = Signal()

111

Programmieren — D. Straub

Klassen

print(signall)

print(type(signall)) # <class '__main__.Signal'>

Wichtig:

o class Signal: = Definition (wie def bei Funktionen)
e Signal() = Aufruf, erstellt eine Instanz

e signall = Variable, die auf die Instanz zeigt

Attribute hinzufiigen

class Signal:

pass

Instanz erstellen

signall = Signal()

Attribute zuweisen
signall.amplitude = 5.0
signall.frequenz = 50.0
signall.phase = 0.0

print(f"Amplitude: {signall.amplitude} V")
print(f"Frequenz: {signall.frequenz} Hz")

Syntax: objekt.attribut = wert

Achtung: Attribute sollten eigentlich im Konstruktor definiert werden (dazu gleich mehr)!

Mehrere Instanzen

class Signal:

pass
Zwel verschiedene Signale

signall = Signal()
signall.amplitude = 5.0

112

Programmieren — D. Straub Klassen

signall.frequenz = 50.0

signal2 = Signal()
signal2.amplitude = 3.3
signal2.frequenz = 1000.0

print(signall.frequenz) # 50.0
print(signal2.frequenz) # 1000.0

Jede Instanz hat eigene Attribute!

Der Konstruktor: __init_

Problem: Attribute manuell setzen ist umstédndlich und fehleranféllig

Losung: Der Konstruktor initialisiert Attribute beim Erstellen

class Signal:
def __init__(self, amplitude, frequenz, phase=0.0):
self.amplitude = amplitude
self.frequenz = frequenz

self.phase = phase

Jetzt einfacher und sicherer:
signall = Signal(5.0, 50.0)
signal2 = Signal(3.3, 1000.0, 1.57)

print(signall.amplitude) # 5.0
print(signal2.frequenz) # 1000.0

Was ist self?

self ist eine Referenz auf die Instanz selbst
class Signal:
def __init__(self, amplitude, frequenz):
self.amplitude = amplitude

self.frequenz = frequenz

113

Programmieren — D. Straub Klassen

signall = Signal(5.0, 50.0)

Was passiert intern: 1. Python erstellt ein leeres Objekt 2. Python ruft __init__(signalil,
5.0, 50.0) auf 3. self zeigt auf signall 4. self.amplitude = amplitude —
signall.amplitude = 5.0

Merke: self ist wie “ich selbst” — das Objekt referenziert sich selbst!

Methoden: Funktionen in Klassen

import math

class Signal:
def __init__(self, amplitude, frequenz, phase=0.0):
self.amplitude = amplitude
self.frequenz = frequenz

self.phase = phase

def effektivwert(self):
return self.amplitude / math.sqrt(2)

signall = Signal(5.0, 50.0)
print(f"Effektivwert: {signalil.effektivwert():.2f} V")

Syntax: objekt.methode() — self wird automatisch tibergeben!

Methoden mit Parametern

import math

class Signal:
def __init__(self, amplitude, frequenz, phase=0.0):
self.amplitude = amplitude
self.frequenz = frequenz

self.phase = phase

114

Programmieren — D. Straub

Klassen

def abtastwert(self, zeit):

Berechnet den Signalwert zu einem Zeitpunkt
omega = 2 * math.pi * self.frequenz

return self.amplitude * math.sin(omega * zeit + self.phase)

signall = Signal(5.0, 50.0)

print(f"wert bei t=0: {signall.abtastwert(0):.2f} V")
print(f"Wert bei t=0.005: {signall.abtastwert(0.005):.2f} V")
print(f"Wert bei t=0.01: {signalil.abtastwert(0.01):.2f} V")

Methoden konnen Attribute andern

import math

class Signal:
def __init__(self, amplitude, frequenz, phase=0.0):
self.amplitude = amplitude
self.frequenz = frequenz

self.phase = phase

def phasenverschiebung(self, delta_phase):

Verschiebt die Phase des Signals

self.phase += delta_phase

def verstaerken(self, faktor):

Verstarkt oder dampft das Signal"""

self.amplitude *= faktor

signall = Signal(5.0, 50.0)
print(f"Amplitude: {signall.amplitude} V")
signall.verstaerken(2.0)

print(f"Nach Verstarkung: {signall.amplitude} V")

115

Programmieren — D. Straub

Klassen

String-Darstellung: __str

class Signal:

def

def

signall

__init__(self, amplitude, frequenz, phase=0.0):

self.amplitude = amplitude
self.frequenz = frequenz

self.phase = phase

__str__(self):

return f"Signal({self.amplitude}V, {self.frequenz}iHz, p={self.phase:.2f})"

= Signal(5.0, 50.0, 0.5)

print(signall) # Nutzt automatisch __str__

str__ wird automatisch aufgerufen, wenn das Objekt mit print() ausgegeben wird!

Beispiel: Messung

class Messung:

def

def

def

__init__(self, wert, einheit):
self.wert = wert

self.einheit = einheit

in_millivolt(self):
if self.einheit == "V":
return self.wert * 1000

return self.wert

__str__(self):

return f"{self.wert} {self.einheit}"

m = Messung(3.3, "V")

print(m)

print(f"In mV: {m.in_millivolt()} mv")

116

Programmieren — D. Straub

Klassen

Klassenattribute vs. Instanzattribute

class Sensor:
Klassenattribut (fir alle Instanzen gleich)

max_abtastrate = 1000 # Hz

def __init__(self, id, kalibrierungsfaktor):

Instanzattribute (fir jede Instanz verschieden)

self.id = id
self.kalibrierungsfaktor = kalibrierungsfaktor

self.messwerte = []

sensorl = Sensor("S001", 1.05)
Sensor("S002", 0.98)

sensor?

print(sensorl.id) # S001 (verschieden)
print(sensor2.id) # S002 (verschieden)
print(sensorl.max_abtastrate) # 1000 (gleich)
print(sensor2.max_abtastrate) # 1000 (gleich)

Klassenattribute sind fiir alle Instanzen gleich!

Wann verwendet man Klassen?
Sinnvoll:

o Zusammengehorige Daten mit Verhalten/Methoden
e Mehrere dhnliche Objekte benétigt
e Zustand muss iiber mehrere Operationen erhalten bleiben

o Strukturierte Datencontainer (statt Tupel/Dictionaries)
Weniger sinnvoll:

e Einfache Berechnungen ohne Zustand — einfache Funktionen
o Zustandslose Funktionen — Funktionen oder Modul

o Einmalige Datensammlung — Dictionary oder Tupel

117

Programmieren — D. Straub Klassen

Zusammenfassung: Klassen

Grundkonzepte:

Klasse = Benutzerdefinierter Datentyp (class)
Instanz = Konkretes Objekt (Klassenname())
Attribute = Daten (self.attribut)

Methoden = Funktionen (def methode(self, ...))

Wichtige Methoden:

__init__(self, ...) — Konstruktor

__str__(self) — String-Darstellung

Ubungsaufgabe: Widerstand

Erstelle eine Klasse Widerstand:

Konstruktor: Widerstandswert in Ohm

parallel(self, r2): Ersatzwiderstand Parallelschaltung (R, = ﬁ)
R R
reihe(self, r2): Ersatzwiderstand Reihenschaltung (R ., = R; +]1%2) ’

leistung(self, spannung): Leistung (P = U—Q)

R
_str__(): z.B. “100 ”

rl = Widerstand(100)
print(rl.parallel(200)) # 66.67
print(rl.leistung(5)) # 0.25

Ubungsaufgabe: Timer

Erstelle eine Klasse Timer:

t

Konstruktor: Initialisiert startzeit und laufend (None bzw. False)
start(): Startet Timer (speichert time.time())

stop(): Stoppt Timer

vergangene_zeit(): Gibt Zeit in Sekunden zuriick

__str__(): Status (“lauft” oder “gestoppt: X.XX s”)

Timer()

t.start()

118

Programmieren — D. Straub Klassen

... Code ausfihren
t.stop()
print(t.vergangene_zeit()) # z.B. 2.34

119

Programmieren — D. Straub Numerisches Programmieren mit NumPy

Numerisches Programmieren mit NumPy

Was ist NumPy?

NumPy = Numerical Python
Die wichtigste Bibliothek fiir numerisches Rechnen in Python.

Unverzichtbar fiir Ingenieurwesen: - Signalverarbeitung, Simulation, Datenanalyse - Basis fiir

SciPy, pandas, Matplotlib - Viel schneller als Python-Listen

Arrays vs. Listen
Listen:

e Flexibel: verschiedene Datentypen moglich

e Langsam fiir numerische Berechnungen
NumPy-Arrays:

o Nur ein Datentyp (z.B. nur Zahlen)
e In C implementiert — sehr schnell

o Natiirliche Syntax fiir mathematische Operationen

import numpy as np

array = np.array([1, 2, 3, 4, 5])
print(array.dtype) # int64 - fester Datentyp

Arrays erstellen

import numpy as np

Aus Liste
a = np.array([1, 2, 3, 4, 5])
print(a)

Nullen, Einsen

nullen = np.zeros(5)

120

Programmieren — D. Straub Numerisches Programmieren mit NumPy

einsen = np.ones(3)

Bereich (wie range)

bereich = np.arange(0, 10, 2) # [0 2 4 6 8]

linspace: Wichtig fiir Plots!

Ohne NumPy:

x =[2+ 1% (9-2)/99 for i in range(100)] # umstandlich!

Mit NumPy:

import numpy as np

x = np.linspace(2, 9, 100) # elegant!

linspace(start, stop, anzahl) - gleichméBig verteilte Werte

Element-weise Operationen

import numpy as np

a = np.array([1, 2, 3, 4, 5])
print(a + 10) # [11 12 13 14 15]
print(a = 2) # [2 4 6 8 10]

print(a #** 2) # [1 4 9 16 25]

Operationen werden auf jedes Element angewendet!

Arrays kombinieren

import numpy as np

o]
I

np.array([1, 2, 3])
np.array([10, 20, 30])

o
]

print(a + b) # [11 22 33]

121

Programmieren — D. Straub

Numerisches Programmieren mit NumPy

print(a * b) # [10 40 90]

Mit Listen geht das nicht!

liste_a = [1, 2, 3]
liste_b [10, 20, 30]

print(liste_a + liste_b) # [1, 2, 3, 10, 20, 30] I

Mathematische Funktionen

import numpy as np
x = np.linspace(0, 2#np.pi, 5)

print(np.sin(x))
print(np.cos(x))
print(np.exp(x))

Funktionen arbeiten element-weise auf Arrays!

Plots mit NumPy

import numpy as np

import matplotlib.pyplot as plt

x-Werte generieren

X = np.linspace(0, 2#np.pi, 100)

Funktion berechnen

np.sin(x)

<
]

plt.plot(x, y)
plt.grid(True)
plt.show()

Viel kiirzer und lesbarer als mit List Comprehensions!

122

Programmieren — D. Straub Numerisches Programmieren mit NumPy

Statistik

import numpy as np
messwerte = np.array([23.1, 24.5, 23.8, 24.2, 23.9])

print(f"Mittelwert: {np.mean(messwerte):.2f}")
print(f"Standardabweichung: {np.std(messwerte):.2f}")
print(f"Minimum: {np.min(messwerte):.2f}")

print(f"Maximum: {np.max(messwerte):.2f}")

2D-Arrays: Vektoren & Matrizen

import numpy as np

3D-Vektor
vektor = np.array([1.0, 2.0, 3.0])

Matrix (3x3)

matrix = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 911)

print(vektor.shape) # (3,)
print(matrix.shape) # (3, 3)

Vektoroperationen

import numpy as np

vl
v2

np.array([1, 2, 31)

np.array([4, 5, 6])

Skalarprodukt
print(np.dot(vl, v2)) # 32

123

Programmieren — D. Straub Numerisches Programmieren mit NumPy

Kreuzprodukt

print(np.cross(vi, v2)) # [-3 6 -3]

Betrag
print(np.linalg.norm(v1)) # 3.74

Ohne NumPy extrem umstindlich!

Matrixmultiplikation mit @

import numpy as np

A = np.array([[1, 2],
[3, 411)
B = np.array([[5, 61,
[7, 811)

Matrixmultiplikation mit @
C=Aa8B
print(C) # [[19 22]

[43 50]]

Achtung: A * B ist element-weise Multiplikation, nicht Matrixmultiplikation!

NumPy vs. for-Schleife: Geschwindigkeit

import numpy as np

import time

Mit for-Schleife
start = time.time()
[i/100 for i in range(100000)]
y = [xi**2 + 2*xi + 1 for xi in x]

print(f"For-Schleife: {time.time()-start:.3f}s")

X

Mit NumPy

124

Programmieren — D. Straub Numerisches Programmieren mit NumPy

start = time.time()

X = np.linspace(0, 1000, 100000)

y:x**2+2*x+1

print(f"NumPy: {time.time()-start:.3f}s")

Relevant bei: CFD-Simulationen, FEM-Berechnungen, Sensordaten, neuronalen Netzen, ...

NumPy Matrix-Multiplikation vs. for-Schleife: Geschwindigkeit

import numpy as np

import time

n =500 # 500x500 Matrizen
A = [[i+] for j in range(n)] for i in range(n)]
B = [[i-j for j in range(n)] for i in range(n)]

start = time.time()

C = [[sum(A[i][k1#B[k][j] for k in range(n)) for j in range(n)] for i in range(n)]
zeit _for = time.time() - start

print(f"For-Schleife: {zeit_for:.2f}s")

>
I

np.arange(n#n).reshape(n, n)

np.arange(n#n).reshape(n, n)

start = time.time()

C=Aa8B

zeit_numpy = time.time() - start

print(f"NumPy: {zeit_numpy:.2f}s")

print(f"Speedup: {zeit_for/zeit_numpy:.0f}x schneller")

Zusammenfassung: NumPy
Wichtigste Funktionen:

o np.array() - Array erstellen

125

Programmieren — D. Straub Numerisches Programmieren mit NumPy

e np.linspace(start, stop, num) - Werte fiir Plots
e np.sin(), np.cos(), np.exp() - Math. Funktionen

e np.dot(), np.cross() - Vektoroperationen
Warum NumPy?

o Kompakter, lesbarer Code
e 10-100x schneller als Listen

e Standard im Ingenieurwesen

Ausblick: SciPy

SciPy baut auf NumPy auf und bietet wissenschaftliche Funktionen:

o Integration: scipy.integrate.quad() - numerische Integration

e Optimierung: scipy.optimize.minimize() - Funktionen minimieren
e Signalverarbeitung: scipy.signal - Filter, FFT, Faltung

o Differentialgleichungen: scipy.integrate.odeint() - DGL losen

o Statistik: scipy.stats - Verteilungen, Tests

from scipy.integrate import quad

def f(x):

return x#%2

ergebnis, fehler = quad(f, 0, 1) # Integral von 0 bis 1
print(f"Integral: {ergebnis:.4f}") # 0.3333

Beispielaufgabe: Kraftegleichgewicht

Drei Krafte wirken auf einen Punkt:

|
N
8

<

3
F1: 4 , I = 1 7F3:
0

Aufgaben: 1. Berechne die resultierende Kraft F’Tes = F 1+ FQ 2. Bestimme F3, sodass
Gleichgewicht herrscht (F,., + Fy = 0) 3. Berechne die Betrige aller Kriifte mit

res

126

Programmieren — D. Straub Numerisches Programmieren mit NumPy

np.linalg.norm() 4. Berechne den Winkel zwischen F} und F, mit:

() F‘l'F‘Q
oSs\Y) = —5———
[Fy |- [y

Beispielaufgabe: Stromberechnung

Gegeben ist ein elektrisches Netzwerk mit drei Maschen. Die Maschengleichungen (Kirchhoff)

ergeben:

51, — 21, + 0, = 10 (1)

Aufgaben: 1. Erstelle die Koeffizientenmatrix A und den Vektor b 2. Lose das Gleichungssystem
mit np.linalg.solve(A, b) 3. Berechne die Gesamtleistung: P = Zle I? - R, mit R = [5,8,6]
Q

127

	Gliederung
	Einführung
	Warum Python? Einfachheit
	Einfachheit: Liste der Quadrate der Zahlen von 0 bis 9
	Beliebtheit
	Warum Beliebtheit wichtig ist
	Mythen über Python
	Zusammenfassung: Warum Python?
	Python installieren
	Versionsgeschichte
	Konsole, Skript, Notebook
	Python ausprobieren, ohne es zu installieren
	One-Minute-Paper

	Grundlagen
	Variablen
	Variablennamen: Fallstricke
	Namen: Konventionen
	Ganze Zahlen (int)
	Division & Integers
	Wahrheitswerte (bool)
	Vergleichsoperatoren
	Truthiness: Was ist wahr?
	Vergleichsoperatoren: Chaining
	Logische Operatoren
	Kurzschlussauswertung
	Gleitkommazahlen (float)
	Vergleich von Gleitkommazahlen
	Extreme Werte
	Strings
	Strings und Unicode: Emoji
	Escape Sequences
	String-Formatierung mit f-Strings
	f-String Formatierung
	Aufgabe: Persönlicher Datenrechner
	Kontrollstrukturen: Übersicht
	Verzweigungen
	Verzweigungen: Wichtige Konzepte
	Verzweigungen: Truthiness in der Praxis
	Komplexe Bedingungen
	Aufgabe

	Funktionen
	Kapselung von Komplexität
	Warum Funktionen?
	Funktionen: Kapselung (encapsulation) der Funktionalität
	Anatomie einer Funktion
	Erste einfache Funktion
	Funktionen mit Parametern
	Mehrere Parameter
	Rückgabewerte: return
	Mehrere Rückgabewerte
	Standardwerte für Parameter
	Lokale vs. Globale Variablen
	Funktionen mit Verzweigungen
	Kompakte Startfreigabe-Funktion
	Reine Funktionen und Nebeneffekte
	Vorteile reiner Funktionen
	Aufgabe: Mitternachtsformel

	Schleifen
	Wozu Schleifen?

	while-Schleifen
	while: Grundform
	Endlosschleife vermeiden
	while: Zählschleife (wenn Bedingungen flexibler sein sollen)
	Sentinel-Schleife (lesen bis Ende)
	Iteration bis Toleranz (Konvergenz)
	break und continue mit while
	Aufgabe: Geschwindigkeitsregelung

	for-Schleifen
	for: Wiederholungen mit range()
	range(): Integer-Folgen erzeugen
	range(start, stop) und range(start, stop, step)
	Über Strings iterieren
	Anwendung: Zeichen zählen
	break und continue in for-Schleifen
	Verschachtelte Schleifen: Multiplikationstabelle
	Aufgabe: Quersumme berechnen
	Aufgabe: Batterie-Lade-Simulation

	Einschub: Wie fange ich an? 🤔
	🤔 Funktion oder Skript?
	📋 Vorgehen: Funktion schreiben
	📋 Vorgehen: Skript schreiben

	Datenstrukturen
	Warum Datenstrukturen?
	Überblick: wichtigste Datenstrukturen in Python

	Listen
	Was sind Listen?
	Listen erstellen
	Listen aus anderen Objekten erstellen
	Auf Elemente zugreifen: Indexierung
	Slicing: Teilbereiche extrahieren
	Länge einer Liste
	Elemente hinzufügen
	Elemente entfernen
	Elemente suchen
	Listen sortieren
	Über Listen iterieren
	Aufgabe: Messdatenverarbeitung

	Tupel
	Was sind Tupel?
	Tupel erstellen
	Auf Tupel-Elemente zugreifen
	Tuple Unpacking
	Tupel sind unveränderbar
	Tupel vs. Listen: Wann was?
	Funktionen mit Tupel-Rückgabe

	Dictionaries
	Was sind Dictionaries?
	Dictionary erstellen
	Auf Werte zugreifen
	Werte hinzufügen und ändern
	Über Dictionaries iterieren
	Verschachtelte Dictionaries
	Live-Aufgabe: Wörterbuch-Statistik

	Sets
	Was sind Sets?
	Sets erstellen
	Sets: Duplikate entfernen
	Wann Sets verwenden?

	NumPy-Arrays
	Was ist NumPy?
	NumPy importieren und Arrays erstellen
	Arrays vs. Listen: Der Unterschied
	Mathematische Funktionen
	Statistische Funktionen
	Mehrdimensionale Arrays
	NumPy vs. Python-Listen: Zusammenfassung
	Zusammenfassung: Datenstrukturen
	Aufgabe: Flugdatenanalyse

	Module & Bibliotheken
	Wiederverwendung: Das Modul-Konzept
	Die Python-Standardbibliothek
	Module importieren: Grundformen
	Das math-Modul: Mathematische Funktionen
	Trigonometrische Funktionen
	Anwendung: Flugbahn berechnen
	Das random-Modul: Zufallszahlen
	Reproduzierbare Zufallszahlen
	Anwendung: Monte-Carlo-Simulation
	Module: Best Practices
	Hilfe zu Modulen bekommen
	Aufgabe: Raketenstart-Simulation
	Drittanbieter-Module: Mehr als die Standardbibliothek
	Was ist pip?
	Pakete mit pip installieren
	Eigene Module erstellen
	Eigenes Modul verwenden
	if __name__ == "__main__"
	Pakete: Mehrere Module gruppieren (Ausblick)

	Algorithmen, Pseudocode & Struktogramme
	Überblick: Algorithmen, Pseudocode & Struktogramme
	Was ist ein Algorithmus?
	Algorithmus: einfaches Beispiel

	Pseudocode
	Warum erst Pseudocode?
	Was ist Pseudocode?
	Pseudocode: Grundelemente (möglicher Stil)
	Beispiel: Maximum finden
	Von Pseudocode zu Python
	Ein weiteres Beispiel
	👥 Gruppenarbeit

	Struktogramme
	Die drei Grundstrukturen
	Grundregel: Der Kasten
	Struktur 1: Sequenz
	Struktur 2: Verzweigung (einfach)
	Struktur 2: Verzweigung (zweiseitig)
	Beispiel: Gerade/Ungerade prüfen
	Verschachtelte Verzweigungen
	Struktur 3: Wiederholung (for-Schleife)
	Struktur 3: Wiederholung (while-Schleife)
	Verschachtelte Strukturen
	Vollständiges Beispiel: Maximum finden
	👥 Gruppenarbeit
	Zusammenfassung

	Arbeiten mit Zeichenketten
	Überblick: Strings in der Praxis
	Wiederholung: Strings sind Sequenzen
	String-Indizierung: Positive und negative Indizes
	String-Iteration: Zeichen durchlaufen
	String-Slicing: Teilstrings extrahieren
	Slicing-Beispiel: String umkehren
	Wichtige String-Methoden: Übersicht
	Groß- und Kleinschreibung
	Sonderfall: ß und casefold()
	Split und Join: Text zerlegen und zusammenfügen
	Split/Join Anwendung: Wörter umkehren
	Text ersetzen
	Präfix und Suffix prüfen
	Suchen in Strings
	Zeichentyp prüfen
	Anwendung: E-Mail-Validierung (vereinfacht)
	Anwendung: Dateinamen verarbeiten
	String-Methoden verketten
	f-Strings: Formatierungsmöglichkeiten
	f-Strings: Tabellen formatieren
	Caesar-Verschlüsselung: Einführung
	Caesar-Verschlüsselung: Algorithmus
	Aufgabe: Caesar-Entschlüsselung
	Aufgabe: Brute-Force-Angriff
	Zusammenfassung: Arbeiten mit Zeichenketten
	Reverse Words: Wörter eines Satzes umkehren

	Visualisierung von Funktionen
	Was ist matplotlib?
	pyplot: Die zentrale Schnittstelle
	Mehr zu plt.show()
	Erster einfacher Plot
	Titel und Achsenbeschriftungen
	Gitter hinzufügen
	Mehrere Linien in einem Plot
	Linien-Stile
	Marker-Stile: Punkte anzeigen
	Linien und Marker kombinieren
	Farben festlegen
	Farben mit Namen
	Stil-String kompakt

	List Comprehensions
	Was sind List Comprehensions?
	Grundstruktur
	Wann List Comprehensions verwenden?
	List Comprehensions für Datenreihen
	Funktionen plotten: Vollständiges Beispiel
	Anwendung: Flugbahn darstellen
	Besondere Punkte hervorheben
	Zusatzaufgabe: Nullstellen markieren
	Zusammenfassung: matplotlib-Grundlagen

	Zahlensysteme
	Überblick: Zahlensysteme
	Bits und Bytes: Grundlagen
	Warum Bits und Bytes?
	7-Bit-ASCII
	Was kann man mit n Bits darstellen?
	Vorzeichenbehaftete Zahlen
	SI-Präfixe vs. Binärpräfixe
	Unterschied SI vs. Binär: Praktische Auswirkung
	Verwendung von Byte-Präfixen in Dateimanagern
	Umrechnung: Beispiele
	Stellenwertsysteme: Grundidee
	Dezimalsystem (Basis 10)
	Binärsystem (Basis 2)
	Hexadezimalsystem (Basis 16)
	Warum Hexadezimal?
	Umrechnung in Python: Binär/Hex → Dezimal
	Umrechnung: Beliebige Basis → Dezimal
	Umrechnung: Dezimal → Beliebige Basis
	Umrechnung: Dezimal → Hexadezimal
	👥 Gruppenarbeit: CSS-Farbcode entschlüsseln
	Umrechnung: Binär ↔ Hexadezimal
	Alle 6 Umrechnungsfälle: Übersicht
	Gleitkommazahlen: Problem der Darstellung
	Binärkommazahlen
	Umrechnung: Dezimalzahlen in Binär
	Beispiel: 0.1 im Binärsystem
	Gleitkommazahlen: IEEE-754-Standard
	Gleitkommazahlen: Grenzen der Genauigkeit
	Gleitkommazahlen: Spezielle Werte
	Gleitkommazahlen: Extreme Werte
	Gleitkommazahlen: Best Practices
	Gleitkommazahlen: Best Practices
	Übungsaufgaben: Zahlensysteme

	Klassen
	Motivation: Warum Klassen?
	Was sind Klassen?
	Klassen haben wir bereits verwendet!
	Wichtig: Klasse vs. Instanz
	Erste eigene Klasse: Signal
	Attribute hinzufügen
	Mehrere Instanzen
	Der Konstruktor: __init__
	Was ist self?
	Methoden: Funktionen in Klassen
	Methoden mit Parametern
	Methoden können Attribute ändern
	String-Darstellung: __str__
	Beispiel: Messung
	Klassenattribute vs. Instanzattribute
	Wann verwendet man Klassen?
	Zusammenfassung: Klassen
	Übungsaufgabe: Widerstand
	Übungsaufgabe: Timer

	Numerisches Programmieren mit NumPy
	Was ist NumPy?
	Arrays vs. Listen
	Arrays erstellen
	linspace: Wichtig für Plots!
	Element-weise Operationen
	Arrays kombinieren
	Mathematische Funktionen
	Plots mit NumPy
	Statistik
	2D-Arrays: Vektoren & Matrizen
	Vektoroperationen
	Matrixmultiplikation mit @
	NumPy vs. for-Schleife: Geschwindigkeit
	NumPy Matrix-Multiplikation vs. for-Schleife: Geschwindigkeit
	Zusammenfassung: NumPy
	Ausblick: SciPy
	Beispielaufgabe: Kräftegleichgewicht
	Beispielaufgabe: Stromberechnung

